
ROS Toolbox
Reference

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

ROS Toolbox Reference
© COPYRIGHT 2019–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2019 Online only New for Version 1.0 (R2019b)
March 2020 Online only Revised for Version 1.1 (R2020a)
September 2020 Online only Revised for Version 1.2 (R2020b)
March 2021 Online only Revised for Version 1.3 (R2021a)
September 2021 Online only Revised for Version 1.4 (R2021b)
March 2022 Online only Revised for Version 1.5 (R2022a)
September 2022 Online only Revised for Version 1.6 (R2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions
1

Classes
2

Methods
3

Blocks
4

iii

Contents

Functions

1

apply
Transform message entities into target frame

Syntax
tfentity = apply(tfmsg,entity)

Description
tfentity = apply(tfmsg,entity) applies the transformation represented by the
'TransformStamped' ROS message to the input message object entity.

This function determines the message type of entity and apples the appropriate transformation
method to it. If the object cannot handle a particular message type, then MATLAB® displays an error
message.

If you want to use only the most current transformation, call transform instead. If you want to store
a transformation message for later use, call getTransform, and then call apply.

Note apply will be removed. Use rosApplyTransform instead. For more information, see “ROS
Message Structure Functions” on page 1-3

Examples

Apply A Transformation To A Point

Connect to a ROS network to get a TransformStamped ROS message. Specify the IP address to
connect. Create a transformation tree and get the transformation between desired frames.

rosinit('192.168.17.129')

Initializing global node /matlab_global_node_73610 with NodeURI http://192.168.17.1:55060/

tftree = rostf;
pause(1);
tform = getTransform(tftree,'base_link','camera_link',...
 rostime('now'),'Timeout',5);

Create a ROS Point message and apply the transformation. You could also get point messages off the
ROS network.

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_link';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

tfpt = apply(tform,pt);

Shut down ROS network.

1 Functions

1-2

rosshutdown

Shutting down global node /matlab_global_node_73610 with NodeURI http://192.168.17.1:55060/

Input Arguments
tfmsg — Transformation message
TransformStamped ROS message handle

Transformation message, specified as a TransformStamped ROS message handle. The tfmsg is a
ROS message of type: geometry_msgs/TransformStamped.

entity — ROS message
Message object handle

ROS message, specified as a Message object handle.

Supported messages are:

• geometry_msgs/PointStamped
• geometry_msgs/PoseStamped
• geometry_msgs/PointCloud2
• geometry_msgs/QuaternionStamped
• geometry_msgs/Vector3Stamped

Output Arguments
tfentity — Transformed ROS message
Message object handle

Transformed ROS message, returned as a Message object handle.

Version History
Introduced in R2019b

ROS Message Structure Functions
Not recommended starting in R2021a

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To support message structures as inputs, new functions that operate on specialized ROS messages
have been provided. These new functions are based on the existing object functions of message
objects, but support ROS and ROS 2 message structures as inputs instead of message objects.

The object functions will be removed in a future release.

 apply

1-3

Message Types Object Function Name New Function Name
Image

CompressedImage

readImage

writeImage

rosReadImage

rosWriteImage
LaserScan readCartesian

readScanAngles

lidarScan

plot

rosReadCartesian

rosReadScanAngles

rosReadLidarScan

rosPlot
PointCloud2 apply

readXYZ

readRGB

readAllFieldNames

readField

scatter3

rosApplyTransform

rosReadXYZ

rosReadRGB

rosReadAllFieldNames

rosReadField

rosPlot
Quaternion readQuaternion rosReadQuaternion
OccupancyGrid readBinaryOccupanyGrid

readOccupancyGrid

writeBinaryOccupanyGrid

writeOccupanyGrid

rosReadOccupancyGrid

rosReadBinaryOccupancyGr
id

rosReadOccupancyGrid

rosWriteBinaryOccupancyG
rid

rosWriteOccupancyGrid
Octomap readOccupancyMap3D rosReadOccupancyMap3D
PointStamped

PoseStamped

QuaternionStamped

Vector3Stamped

TransformStamped

apply rosApplyTransform

All messages showdetails rosShowDetails

See Also
rosApplyTransform

1 Functions

1-4

call
Call ROS or ROS 2 service server and receive a response

Syntax
response = call(serviceclient)
response = call(serviceclient,requestmsg)
[response,status,statustext] = call(___)
response = call(___ ,Name,Value)

Description
response = call(serviceclient) sends a default service request message and waits for a
service response. The default service request message is an empty message of type
serviceclient.ServiceType.

response = call(serviceclient,requestmsg) specifies a service request message,
requestmsg, to be sent to the service.

[response,status,statustext] = call(___) returns a status indicating whether a
response has been received successfully, and a statustext that captures additional information
about the status, using any of the arguments from the previous syntaxes. If the call fails, the
status will be false with an empty default response message, and this function will not display an
error.

response = call(___ ,Name,Value) provides additional options specified by one or more
Name,Value pair arguments, using any of the arguments from the previous syntaxes.

Examples

Call Service Client with Default Message

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.2861 seconds.
Initializing ROS master on http://172.30.131.134:53576.
Initializing global node /matlab_global_node_51384 with NodeURI http://bat6234win64:49973/ and MasterURI http://localhost:53576.

Set up a service server. Use structures for the ROS message data format.

server = rossvcserver('/test', 'std_srvs/Empty', @exampleHelperROSEmptyCallback,...
 'DataFormat','struct');
client = rossvcclient('/test','DataFormat','struct');

Check whether the service server is available. If it is, wait for the service client to connect to the
server.

 call

1-5

if(isServerAvailable(client))
 [connectionStatus,connectionStatustext] = waitForServer(client)
end

connectionStatus = logical
 1

connectionStatustext =
'success'

Call service server with default message.

response = call(client)

response = struct with fields:
 MessageType: 'std_srvs/EmptyResponse'

If the call function above fails, it results in an error. Instead of an error, if you would prefer to react
to a call failure using conditionals, return the status and statustext outputs from the call
function. The status output indicates if the call succeeded, while statustext provides additional
information.

numCallFailures = 0;
[response,status,statustext] = call(client,"Timeout",3);
if ~status
 numCallFailures = numCallFailues + 1;
 fprintf("Call failure number %d. Error cause: %s\n",numCallFailures,statustext)
else
 disp(response)
end

 MessageType: 'std_srvs/EmptyResponse'

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_51384 with NodeURI http://bat6234win64:49973/ and MasterURI http://localhost:53576.
Shutting down ROS master on http://172.30.131.134:53576.

Call for Response Using Specific Request Message

Connect to a ROS network.

rosinit

Launching ROS Core...
....Done in 4.3789 seconds.
Initializing ROS master on http://172.30.131.134:52837.
Initializing global node /matlab_global_node_78236 with NodeURI http://bat6234win64:53948/ and MasterURI http://localhost:52837.

Set up a service server and client. This server calculates the sum of two integers and is based on a
ROS service tutorial.

1 Functions

1-6

sumserver = rossvcserver('/sum','roscpp_tutorials/TwoInts',@exampleHelperROSSumCallback);
sumclient = rossvcclient('/sum');

Get the request message for the client and modify the parameters.

reqMsg = rosmessage(sumclient);
reqMsg.A = 2;
reqMsg.B = 1;

Call service and get a response. The response should be the sum of the two integers given in the
request message. Wait 5 seconds for the service to time out.

response = call(sumclient,reqMsg,'Timeout',5)

response =
 ROS TwoIntsResponse message with properties:

 MessageType: 'roscpp_tutorials/TwoIntsResponse'
 Sum: 3

 Use showdetails to show the contents of the message

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_78236 with NodeURI http://bat6234win64:53948/ and MasterURI http://localhost:52837.
Shutting down ROS master on http://172.30.131.134:52837.

Call ROS 2 Service Client With a Custom Callback Function

Create a sample ROS 2 network with two nodes.

node_1 = ros2node('node_1_service_client');
node_2 = ros2node('node_2_service_client');

Set up a service server and attach it to a ROS 2 node. Specify the callback function flipstring,
which flips the input string. The callback function is defined at the end of this example.

server = ros2svcserver(node_1,'/test','test_msgs/BasicTypes',@flipString);

Set up a service client of the same service type and attach it to a different node.

client = ros2svcclient(node_2,'/test','test_msgs/BasicTypes');

Wait for the service client to connect to the server.

[connectionStatus,connectionStatustext] = waitForServer(client)

connectionStatus = logical
 1

connectionStatustext =
'success'

 call

1-7

Create a request message based on the client. Assign the string to the corresponding field in the
message, string_value.

request = ros2message(client);
request.string_value = 'hello world';

Check whether the service server is available. If it is, send a service request and wait for a response.
Specify that the service waits 3 seconds for a response.

if(isServerAvailable(client))
 response = call(client,request,'Timeout',3);
end

The response is a flipped string from the request message which you see in the string_value field.

response.string_value

ans =
'dlrow olleh'

If the call function above fails, it results in an error. Instead of an error, if you would prefer to react
to a call failure using conditionals, return the status and statustext outputs from the call
function. The status output indicates if the call succeeded, while statustext provides additional
information.

numCallFailures = 0;
[response,status,statustext] = call(client,request,"Timeout",3);
if ~status
 numCallFailures = numCallFailues + 1;
 fprintf("Call failure number %d. Error cause: %s\n",numCallFailures,statustext)
else
 disp(response.string_value)
end

dlrow olleh

The callback function used to flip the string is defined below.

function resp = flipString(req,resp)
% FLIPSTRING Reverses the order of a string in REQ and returns it in RESP.
resp.string_value = fliplr(req.string_value);
end

Input Arguments
serviceclient — Service client
ros.ServiceClient object handle | ros2serviclient object handle

ROS or ROS 2 service client, specified as a ros.ServiceClient or ros2serviceclient object
handle, respectively.

requestmsg — Request message
Message object handle | structure

Request message, specified as a Message object handle or structure. The default message type is
serviceclient.ServiceType.

1 Functions

1-8

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 1-10.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "TimeOut",5

TimeOut — Timeout for service response in seconds
inf (default) | scalar

Timeout for service response in seconds, specified as a comma-separated pair consisting of
"Timeout" and a scalar. If the service client does not receive a service response and the timeout
period elapses, call displays an error message and lets MATLAB continue running the current
program. The default value of inf prevents MATLAB from running the current program until the
service client receives a service response.

DataFormat — Message format for ROS service clients
"object" (default) | "struct"

Message format for ROS service clients, specified as "object" or "struct". Set this property on
creation of the service client using the name-value input. For more information, see “ROS Message
Structures” on page 1-10. This argument applies to ROS service clients only.

Output Arguments
response — Response message
Message object handle | structure

Response message sent by the service server, returned as a Message object handle or structure.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 1-10.

status — Status of the service call
logical scalar

Status of the service call, returned as a logical scalar. If the call fails, status will be false.

 call

1-9

Note Use the status output argument when you use call in the entry-point function for code
generation. This will avoid runtime errors and outputs the status instead, which can be reacted to in
the calling code.

statustext — Status text associated with the service call status
character vector

Status text associated with the service call status, returned as one of the following:

• 'success' — The service response was successfully received.
• 'input' — The input to the function is invalid.
• 'timeout' — The service response was not received within the specified timeout.
• 'unknown' — The service response was not received due to unknown errors.

Tips
• ROS 2 service servers cannot communicate errors in callback execution directly to clients. In such

situations, the servers only return the default response without any indication of failure. Hence, it
is recommended to use try-catch blocks within the callback function, and set specific fields in the
response message to communicate the success/failure of the callback execution on the server side.

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

1 Functions

1-10

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
rossvcclient | ros2svcclient | rosmessage | ros2message

Topics
“Call and Provide ROS Services”
“Call and Provide ROS 2 Services”

 call

1-11

cancelAllGoals
Cancel all goals on action server

Syntax
cancelAllGoals(client)

Description
cancelAllGoals(client) sends a request from the specified client to the ROS action server to
cancel all currently pending or active goals, including goals from other clients.

Examples

Send and Cancel ROS Action Goals

This example shows how to send and cancel goals for ROS actions. Action types must be setup
beforehand with an action server running.

You must have set up the '/fibonacci' action type. To run this action server, use the following
command on the ROS system:

rosrun actionlib_tutorials fibonacci_server

First, set up a ROS action client. Then, send a goal message with modified parameters. Finally, cancel
your goal and all goals on the action server.

Connect to a ROS network with a specified IP address. Create a ROS action client connected to the
ROS network using rosactionclient. Specify the action name. Wait for the client to be connected
to the server.

rosinit('192.168.203.133',11311)

Initializing global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

[actClient,goalMsg] = rosactionclient('/fibonacci','DataFormat','struct');
waitForServer(actClient);

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = int32(4);
[resultMsg,resultState] = sendGoalAndWait(actClient,goalMsg)

resultMsg = struct with fields:
 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [0 1 1 2 3]

resultState =
'succeeded'

rosShowDetails(resultMsg)

1 Functions

1-12

ans =
 '
 MessageType : actionlib_tutorials/FibonacciResult
 Sequence : [0, 1, 1, 2, 3]'

Send a new goal message without waiting.

goalMsg.Order = int32(5);
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

delete(actClient)

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

Input Arguments
client — ROS action client
SimpleActionClient object handle

ROS action client, specified as a SimpleActionClient object handle. This simple action client
enables you to track a single goal at a time.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
cancelGoal | rosaction | sendGoal | sendGoalAndWait

 cancelAllGoals

1-13

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

1 Functions

1-14

cancelGoal
Cancel last goal sent by client

Syntax
cancelGoal(client)

Description
cancelGoal(client) sends a cancel request for the tracked goal, which is the last one sent to the
action server. The specified client sends the request.

If the goal is in the 'active' state, the server preempts the execution of the goal. If the goal is
'pending', it is recalled. If this client has not sent a goal, or if the previous goal was achieved, this
function returns immediately.

Examples

Send and Cancel ROS Action Goals

This example shows how to send and cancel goals for ROS actions. Action types must be setup
beforehand with an action server running.

You must have set up the '/fibonacci' action type. To run this action server, use the following
command on the ROS system:

rosrun actionlib_tutorials fibonacci_server

First, set up a ROS action client. Then, send a goal message with modified parameters. Finally, cancel
your goal and all goals on the action server.

Connect to a ROS network with a specified IP address. Create a ROS action client connected to the
ROS network using rosactionclient. Specify the action name. Wait for the client to be connected
to the server.

rosinit('192.168.203.133',11311)

Initializing global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

[actClient,goalMsg] = rosactionclient('/fibonacci','DataFormat','struct');
waitForServer(actClient);

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = int32(4);
[resultMsg,resultState] = sendGoalAndWait(actClient,goalMsg)

resultMsg = struct with fields:
 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [0 1 1 2 3]

 cancelGoal

1-15

resultState =
'succeeded'

rosShowDetails(resultMsg)

ans =
 '
 MessageType : actionlib_tutorials/FibonacciResult
 Sequence : [0, 1, 1, 2, 3]'

Send a new goal message without waiting.

goalMsg.Order = int32(5);
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

delete(actClient)

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

Input Arguments
client — ROS action client
SimpleActionClient object handle

ROS action client, specified as a SimpleActionClient object handle. This simple action client
enables you to track a single goal at a time.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the Build Type, Executable.

1 Functions

1-16

• Usage in MATLAB Function block is not supported.

See Also
cancelAllGoals | rosaction | sendGoal | sendGoalAndWait

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

 cancelGoal

1-17

canTransform
Verify if transformation is available

Syntax
isAvailable = canTransform(tftree,targetframe,sourceframe)
isAvailable = canTransform(tftree,targetframe,sourceframe,sourcetime)

isAvailable = canTransform(bagSel,targetframe,sourceframe)
isAvailable = canTransform(bagSel,targetframe,sourceframe,sourcetime)

isAvailable = canTransform(bagreader,targetframe,sourceframe)
isAvailable = canTransform(bagreader,targetframe,sourceframe,sourcetime)

Description
TransformationTree Object

isAvailable = canTransform(tftree,targetframe,sourceframe) verifies if a
transformation between the source frame and target frame is available at the current time in
tftree. Create the tftree object using rostf, which requires a connection to a ROS network.

isAvailable = canTransform(tftree,targetframe,sourceframe,sourcetime) verifies if
a transformation is available for the source time. If sourcetime is outside the buffer window, the
function returns false.

BagSelection Object

isAvailable = canTransform(bagSel,targetframe,sourceframe) verifies if a
transformation is available in a rosbag in bagSel. To get the bagSel input, load a rosbag using
rosbag.

isAvailable = canTransform(bagSel,targetframe,sourceframe,sourcetime) verifies if
a transformation is available in a rosbag for the source time. If sourcetime is outside the buffer
window, the function returns false.

rosbagreader Object

isAvailable = canTransform(bagreader,targetframe,sourceframe) verifies if a
transformation is available in a rosbag in bagreader.

isAvailable = canTransform(bagreader,targetframe,sourceframe,sourcetime)
verifies if a transformation is available in a rosbag for the source time. If sourcetime is outside the
buffer window, the function returns false.

Examples

Send a Transformation to ROS Network

This example shows how to create a transformation and send it over the ROS network.

1 Functions

1-18

Create a ROS transformation tree. Use rosinit to connect a ROS network. Replace ipaddress with
your ROS network address.

rosinit;

Launching ROS Core...
....Done in 4.1192 seconds.
Initializing ROS master on http://192.168.125.1:56090.
Initializing global node /matlab_global_node_16894 with NodeURI http://HYD-KVENNAPU:63122/

tftree = rostf;
pause(2)

Verify the transformation you want to send over the network does not already exist. The
canTransform function returns false if the transformation is not immediately available.

canTransform(tftree,'new_frame','base_link')

ans = logical
 0

Create a TransformStamped message. Populate the message fields with the transformation
information.

tform = rosmessage('geometry_msgs/TransformStamped');
tform.ChildFrameId = 'new_frame';
tform.Header.FrameId = 'base_link';
tform.Transform.Translation.X = 0.5;
tform.Transform.Rotation.X = 0.5;
tform.Transform.Rotation.Y = 0.5;
tform.Transform.Rotation.Z = 0.5;
tform.Transform.Rotation.W = 0.5;

Send the transformation over the ROS network.

sendTransform(tftree,tform)

Verify the transformation is now on the ROS network.

canTransform(tftree,'new_frame','base_link')

ans = logical
 1

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_16894 with NodeURI http://HYD-KVENNAPU:63122/
Shutting down ROS master on http://192.168.125.1:56090.

 canTransform

1-19

Get ROS Transformations and Apply to ROS Messages

This example shows how to set up a ROS transformation tree and transform frames based on
transformation tree information. It uses time-buffered transformations to access transformations at
different times.

Create a ROS transformation tree. Use rosinit to connect to a ROS network. Replace ipaddress
with your ROS network address.

ipaddress = '192.168.17.129';
rosinit(ipaddress,11311)

Initializing global node /matlab_global_node_14346 with NodeURI http://192.168.17.1:56312/

tftree = rostf;
pause(1)

Look at the available frames on the transformation tree.

tftree.AvailableFrames

ans = 36×1 cell
 {'base_footprint' }
 {'base_link' }
 {'camera_depth_frame' }
 {'camera_depth_optical_frame'}
 {'camera_link' }
 {'camera_rgb_frame' }
 {'camera_rgb_optical_frame' }
 {'caster_back_link' }
 {'caster_front_link' }
 {'cliff_sensor_front_link' }
 {'cliff_sensor_left_link' }
 {'cliff_sensor_right_link' }
 {'gyro_link' }
 {'mount_asus_xtion_pro_link' }
 {'odom' }
 {'plate_bottom_link' }
 {'plate_middle_link' }
 {'plate_top_link' }
 {'pole_bottom_0_link' }
 {'pole_bottom_1_link' }
 {'pole_bottom_2_link' }
 {'pole_bottom_3_link' }
 {'pole_bottom_4_link' }
 {'pole_bottom_5_link' }
 {'pole_kinect_0_link' }
 {'pole_kinect_1_link' }
 {'pole_middle_0_link' }
 {'pole_middle_1_link' }
 {'pole_middle_2_link' }
 {'pole_middle_3_link' }
 ⋮

Check if the desired transformation is now available. For this example, check for the transformation
from 'camera_link' to 'base_link'.

canTransform(tftree,'base_link','camera_link')

1 Functions

1-20

ans = logical
 1

Get the transformation for 3 seconds from now. The getTransform function will wait until the
transformation becomes available with the specified timeout.

desiredTime = rostime('now') + 3;
tform = getTransform(tftree,'base_link','camera_link',...
 desiredTime,'Timeout',5);

Create a ROS message to transform. Messages can also be retrieved off the ROS network.

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_link';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

Transform the ROS message to the 'base_link' frame using the desired time previously saved.

tfpt = transform(tftree,'base_link',pt,desiredTime);

Optional: You can also use apply with the stored tform to apply this transformation to the pt
message.

tfpt2 = apply(tform,pt);

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_14346 with NodeURI http://192.168.17.1:56312/

Get Transformations from rosbag File

Get transformations from rosbag (.bag) files by loading the rosbag and checking the available
frames. From these frames, use getTransform to query the transformation between two coordinate
frames.

Load the rosbag.

bag = rosbag('ros_turtlesim.bag');

Get a list of available frames.

frames = bag.AvailableFrames;

Get the latest transformation between two coordinate frames.

tf = getTransform(bag,'world',frames{1});

Check for a transformation available at a specific time and retrieve the transformation. Use
canTransform to check if the transformation is available. Specify the time using rostime.

tfTime = rostime(bag.StartTime + 1);
if (canTransform(bag,'world',frames{1},tfTime))

 canTransform

1-21

 tf2 = getTransform(bag,'world',frames{1},tfTime);
end

Get Transformations from rosbag File Using rosbagreader Object

Get transformations from rosbag (.bag) files by loading the rosbag and checking the available
frames. From these frames, use getTransform to query the transformation between two coordinate
frames.

Load the rosbag.

bagMsgs = rosbagreader("ros_turtlesim.bag")

bagMsgs =
 rosbagreader with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\14\tp4aa60852\ros-ex81142742\ros_turtlesim.bag'
 StartTime: 1.5040e+09
 EndTime: 1.5040e+09
 NumMessages: 6089
 AvailableTopics: [6x3 table]
 AvailableFrames: {2x1 cell}
 MessageList: [6089x4 table]

Get a list of available frames.

frames = bagMsgs.AvailableFrames

frames = 2x1 cell
 {'turtle1'}
 {'world' }

Get the latest transformation between two coordinate frames.

tf = getTransform(bagMsgs,'world',frames{1})

tf =
 ROS TransformStamped message with properties:

 MessageType: 'geometry_msgs/TransformStamped'
 Header: [1x1 Header]
 Transform: [1x1 Transform]
 ChildFrameId: 'turtle1'

 Use showdetails to show the contents of the message

Check for a transformation available at a specific time and retrieve the transformation. Use
canTransform to check if the transformation is available. Specify the time using rostime.

tfTime = rostime(bagMsgs.StartTime + 1);
if (canTransform(bagMsgs,'world',frames{1},tfTime))
 tf2 = getTransform(bagMsgs,'world',frames{1},tfTime);
end

1 Functions

1-22

Input Arguments
tftree — ROS transformation tree
TransformationTree object

ROS transformation tree, specified as a TransformationTree object. Create a transformation tree
by calling the rostf function.

bagSel — Selection of rosbag messages
BagSelection object

Selection of rosbag messages, specified as a BagSelection object. To create a selection of rosbag
messages, use rosbag.

bagreader — Index of messages in rosbag
rosbagreader object

Index of the messages in the rosbag, specified as a rosbagreader object.

targetframe — Target coordinate frame
string scalar | character vector

Target coordinate frame, specified as a string scalar or character vector. You can view the frames
available for transformation by calling tftree.AvailableFrames or bagSel.AvailableFrames.

sourceframe — Initial coordinate frame
string scalar | character vector

Initial coordinate frame, specified as a string scalar or character vector. You can view the available
frames for transformation by calling tftree.AvailableFrames or bagSel.AvailableFrames.

sourcetime — ROS or system time
scalar | Time object handle

ROS or system time, specified as a scalar or Time object handle. The scalar input is converted to a
Time object using rostime.

Output Arguments
isAvailable — Indicator if transform exists
boolean

Indicator if transform exists, returned as a boolean. The function returns false if:

• sourcetime is outside the buffer window for a tftree object.
• sourcetime is outside the time of the bagSel or bagreader object.
• sourcetime is in the future.
• The transformation is not published yet.

Version History
Introduced in R2019b

 canTransform

1-23

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the syntaxes with TransformationTree object as input.
• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
getTransform | transform | rosbag | rostf | waitForTransform | rosbagreader

1 Functions

1-24

definition
Retrieve definition of ROS message type

Syntax
def = definition(msg)

Description
def = definition(msg) returns the ROS definition of the message type associated with the
message object, msg. The details of the message definition include the structure, property data types,
and comments from the authors of that specific message.

Examples

Access ROS Message Definition for Message

Create a Point Message.

point = rosmessage('geometry_msgs/Point');

Access the definition.

def = definition(point)

def =
 '% This contains the position of a point in free space
 double X
 double Y
 double Z
 '

Input Arguments
msg — ROS message
Message object handle

ROS message, specified as a Message object handle. This message can be created using the
rosmessage function.

Output Arguments
def — Details of message definition
character vector

Details of the information inside the ROS message definition, returned as a character vector.

 definition

1-25

Version History
Introduced in R2019b

See Also
rosmessage | rosmsg

1 Functions

1-26

del
Delete a ROS parameter

Syntax
del(ptree,paramname)
del(ptree,namespace)

Description
del(ptree,paramname) deletes a parameter with name paramname from the parameter tree,
ptree. The parameter is also deleted from the ROS parameter server. If the specified paramname
does not exist, the function displays an error.

del(ptree,namespace) deletes from the parameter tree all parameter values under the specified
namespace.

Examples

Delete Parameter on ROS Master

Connect to the ROS network. Create a parameter tree and a 'MyParam' parameter. Check that the
parameter exists.

rosinit

Launching ROS Core...
...Done in 3.9965 seconds.
Initializing ROS master on http://172.30.131.134:53117.
Initializing global node /matlab_global_node_95134 with NodeURI http://bat6234win64:58410/ and MasterURI http://localhost:53117.

ptree = rosparam;
set(ptree,'MyParam','test')
has(ptree,'MyParam')

ans = logical
 1

Delete the parameter. Verify it was deleted. Shut down the ROS network.

del(ptree,'MyParam')
has(ptree,'MyParam')

ans = logical
 0

rosshutdown

Shutting down global node /matlab_global_node_95134 with NodeURI http://bat6234win64:58410/ and MasterURI http://localhost:53117.
Shutting down ROS master on http://172.30.131.134:53117.

 del

1-27

Input Arguments
ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using the rosparam
function.

paramname — ROS parameter name
string scalar | character vector

ROS parameter name, specified as a string scalar or character vector. This string must match the
parameter name exactly.

namespace — ROS parameter namespace
string scalar | character vector

ROS parameter namespace, specified as a string scalar or character vector. All parameter names
starting with this string are listed when calling rosparam("list",namespace).

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
set | has | rosparam

1 Functions

1-28

deleteFile
Delete file from device

Syntax
deleteFile(device,filename)

Description
deleteFile(device,filename) deletes the specified file from the ROS or ROS 2 device.

Examples

Put, Get, and Delete Files on ROS Device

Put a file from your host computer onto a ROS device, get it back, and then delete it.

Connect to a ROS device. Specify the device address, user name, and password of your ROS device.

d = rosdevice('192.168.17.128','user','password');

Put a new text file that is in the MATLAB(R) current folder onto the ROS device. The destination
folder must exist.

putFile(d,'test_file.txt','/home/user/test_folder')

Get a text file from the ROS device. You can get any file, not just ones added from MATLAB(R). By
default, the file is added to the MATLAB current folder.

getFile(d,'/home/user/test_folder/test_file.txt')

Delete the text file on the ROS device.

deleteFile(d,'/home/user/test_folder/test_file.txt')

Put, Get, and Delete Files on ROS Device Using Wildcards

Put a file from your host computer onto a ROS device, get it back, and then delete it. Use wildcards to
search for all matching files.

Note: You must have a valid ROS device to connect to at the IP address specified in the example.

Connect to a ROS device. Specify the device address, user name, and password of your ROS device.

d = rosdevice('192.168.17.128','user','password');

Put all text files at the specified path onto the ROS device. The destination folder must exist.

putFile(d,'C:/MATLAB/*.txt','/home/user/test_folder')

 deleteFile

1-29

Get all text files from the ROS device. You can get any files, not just ones added from MATLAB(R). By
default, the files are added to the MATLAB current folder.

getFile(d,'/home/user/test_folder/*.txt')

Delete all text files on the ROS device at the specified folder.

deleteFile(d,'/home/user/test_folder/*.txt')

Input Arguments
device — ROS or ROS 2 device
rosdevice object | ros2device object

ROS or ROS 2 device, specified as a rosdevice or ros2device object, respectively.

filename — File to delete
character vector

File to delete, specified as a character vector. When you specify the file name, you can use path
information and wildcards.
Example: '/home/user/image.jpg'
Example: '/home/user/*.jpg'
Data Types: cell

Version History
Introduced in R2019b

See Also
rosdevice | ros2device | putFile | getFile | dir | openShell | system

1 Functions

1-30

dir
List folder contents on device

Syntax
dir(device,folder)
clist = dir(device,folder)

Description
dir(device,folder) lists the files in a folder on the ROS or ROS 2 device. Wildcards are
supported.

clist = dir(device,folder) stores the list of files as a structure.

Examples

View Folder Contents on ROS Device

Connect to a ROS device and list the contents of a folder.

Connect to a ROS device. Specify the device address, user name, and password of your ROS device.

d = rosdevice('192.168.17.129','user','password');

Get the folder list of a Catkin workspace on your ROS device. View the folder as a table.

flist = dir(d,'/home/user/Documents/mw_catkin_ws/');
ftable = struct2table(flist)

ftable=6×4 table
 name folder isdir bytes
 _____________________ _____________________________________ _____ _____

 {'.' } {'/home/user/Documents/mw_catkin_ws'} true 0
 {'..' } {'/home/user/Documents/mw_catkin_ws'} true 0
 {'.catkin_workspace'} {'/home/user/Documents/mw_catkin_ws'} false 98
 {'build' } {'/home/user/Documents/mw_catkin_ws'} true 0
 {'devel' } {'/home/user/Documents/mw_catkin_ws'} true 0
 {'src' } {'/home/user/Documents/mw_catkin_ws'} true 0

Input Arguments
device — ROS or ROS 2 device
rosdevice object | ros2device object

ROS or ROS 2 device, specified as a rosdevice or ros2device object, respectively.

 dir

1-31

folder — Folder name
character vector

Name of the folder to list the contents of, specified as a character vector.

Output Arguments
clist — Contents list
structure

Contents list, returned as a structure. The structure contains these fields:

• name — File name (char)
• folder — Absolute path (char)
• bytes — Size of the file in bytes (double)
• isdir — Indicator of whether name is a folder (logical)

Version History
Introduced in R2019b

See Also
rosdevice | ros2device | putFile | getFile | deleteFile | openShell | system

1 Functions

1-32

get
Get ROS parameter value

Syntax
pvalue = get(ptree)
pvalue = get(ptree,paramname)
pvalue = get(ptree,namespace)
[pvalue,status] = get(ptree,paramname)
pvalue = get(ptree,paramname,"DataType",ptype)

Description
pvalue = get(ptree) returns a dictionary of parameter values under the root namespace: /. The
dictionary is stored in a structure.

pvalue = get(ptree,paramname) gets the value of the parameter with the name paramname
from the parameter tree object ptree.

pvalue = get(ptree,namespace) returns a dictionary of parameter values under the specified
namespace.

The following ROS data types are supported as values of parameters. For each ROS data type, the
corresponding MATLAB data type is also listed.

• 32-bit integer — int32
• Boolean — logical
• double — double
• strings — string scalar, string, or character vector, char
• list — cell array (cell)
• dictionary — structure (struct)

[pvalue,status] = get(ptree,paramname) returns the parameter values and the associated
status. status indicates whether the pvalue successfully returned.

pvalue = get(ptree,paramname,"DataType",ptype) specifies the ROS parameter data type
when generating code. The input parameter type value must match the existing parameter type else
the function returns the pvalue as empty, [], for the requested type.

Examples

Set and Get Parameter Value

Create the parameter tree. A ROS network must be available using rosinit.

rosinit

 get

1-33

Launching ROS Core...
..Done in 2.712 seconds.
Initializing ROS master on http://172.30.131.134:60147.
Initializing global node /matlab_global_node_74541 with NodeURI http://bat6234win64:53180/ and MasterURI http://localhost:60147.

ptree = rosparam;

Set a parameter value. You can also use the simplified version without a parameter tree:

rosparam set 'DoubleParam' 1.0

set(ptree,'DoubleParam',1.0)

Get the parameter value.

get(ptree,'DoubleParam')

ans = 1

Alternatively, use the simplified versions without using the parameter tree.

rosparam set 'DoubleParam' 2.0
rosparam get 'DoubleParam'

2

Disconnect from ROS network.

rosshutdown

Shutting down global node /matlab_global_node_74541 with NodeURI http://bat6234win64:53180/ and MasterURI http://localhost:60147.
Shutting down ROS master on http://172.30.131.134:60147.

Input Arguments
ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using the rosparam
function.

paramname — ROS parameter name
string scalar | character vector

ROS parameter name, specified as a character vector. This string must match the parameter name
exactly.

namespace — ROS parameter namespace
string scalar | character vector

ROS parameter namespace, specified as a string scalar or character vector. All parameter names
starting with this string are listed when calling rosparam("list",namespace).

ptype — ROS parameter data type
'int32' | 'logical' | 'double' | 'char'

ROS parameter data type, specified as either 'int32', 'logical', 'double', or 'char'.

1 Functions

1-34

Output Arguments
pvalue — ROS parameter value or dictionary of values
int32 | logical | double | character vector | cell array | structure

ROS parameter value, returned as a supported MATLAB data type. When specifying the namespace
input argument, pvalue is returned as a dictionary of parameter values under the specified
namespace. The dictionary is represented in MATLAB as a structure.

The following ROS data types are supported as values of parameters. For each ROS data type, the
corresponding MATLAB data type is also listed.

• 32-bit integer — int32
• Boolean — logical
• double — double
• string — character vector (char)
• list — cell array (cell)
• dictionary — structure (struct)

status — Status of ROS parameter value
true | false

Status of ROS parameter value, returned as true or false. If the status is false, the pvalue value
is returned as empty, [].
Data Types: logical

Limitations
Base64-encoded binary data and iso 8601 data from ROS are not supported.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

For code generation, only the following ROS data types are supported as values of parameters,

• 32-bit integer — int32
• Boolean — logical
• double — double
• strings — string scalar, string, or character vector, char

 get

1-35

See Also
set | rosparam

1 Functions

1-36

getFile
Get file from device

Syntax
getFile(device,remoteSource)
getFile(device,remoteSource,localDestination)

Description
getFile(device,remoteSource) copies the specified file from the ROS or ROS 2 device to the
MATLAB current folder. Wildcards are supported.

getFile(device,remoteSource,localDestination) copies the remote file to a destination
path. Specify a file name at the end of the destination path to copy with a custom file name.

Examples

Put, Get, and Delete Files on ROS Device

Put a file from your host computer onto a ROS device, get it back, and then delete it.

Connect to a ROS device. Specify the device address, user name, and password of your ROS device.

d = rosdevice('192.168.17.128','user','password');

Put a new text file that is in the MATLAB(R) current folder onto the ROS device. The destination
folder must exist.

putFile(d,'test_file.txt','/home/user/test_folder')

Get a text file from the ROS device. You can get any file, not just ones added from MATLAB(R). By
default, the file is added to the MATLAB current folder.

getFile(d,'/home/user/test_folder/test_file.txt')

Delete the text file on the ROS device.

deleteFile(d,'/home/user/test_folder/test_file.txt')

Put, Get, and Delete Files on ROS Device Using Wildcards

Put a file from your host computer onto a ROS device, get it back, and then delete it. Use wildcards to
search for all matching files.

Note: You must have a valid ROS device to connect to at the IP address specified in the example.

Connect to a ROS device. Specify the device address, user name, and password of your ROS device.

 getFile

1-37

d = rosdevice('192.168.17.128','user','password');

Put all text files at the specified path onto the ROS device. The destination folder must exist.

putFile(d,'C:/MATLAB/*.txt','/home/user/test_folder')

Get all text files from the ROS device. You can get any files, not just ones added from MATLAB(R). By
default, the files are added to the MATLAB current folder.

getFile(d,'/home/user/test_folder/*.txt')

Delete all text files on the ROS device at the specified folder.

deleteFile(d,'/home/user/test_folder/*.txt')

Input Arguments
device — ROS or ROS 2 device
rosdevice object | ros2device object

ROS or ROS 2 device, specified as a rosdevice or ros2device object, respectively.

remoteSource — Path and name of file on the device
source path

Path and name of the file on the device. Specify the path as a character vector. You can use an
absolute path or a relative path from the MATLAB current folder. Use the path and file naming
conventions of the operating system on your host computer.
Example: '/home/user/test_folder/test_file.txt'
Data Types: char

localDestination — Destination folder path and optional file name
character vector

Destination folder path and optional file name, specified as a character vector. Specify a file name at
the end of the destination path to copy with a custom file name. Use the host computer path and file
naming conventions.
Example: 'C:/User/username/test_folder'
Data Types: char

Version History
Introduced in R2019b

See Also
rosdevice | ros2device | putFile | deleteFile | dir | openShell | system

1 Functions

1-38

getTransform
Retrieve transformation between two coordinate frames

Syntax
tf = getTransform(tftree,targetframe,sourceframe)
tf = getTransform(tftree,targetframe,sourceframe,sourcetime)
tf = getTransform(___ ,"Timeout",timeout)

tf = getTransform(bagSel,targetframe,sourceframe)
tf = getTransform(bagSel,targetframe,sourceframe,sourcetime)

tf = getTransform(bagreader,targetframe,sourceframe)
tf = getTransform(bagreader,targetframe,sourceframe,sourcetime)

Description
TransformationTree Object

tf = getTransform(tftree,targetframe,sourceframe) returns the latest known
transformation between two coordinate frames in tftree. Create the tftree object using rostf,
which requires a connection to a ROS network.

Transformations are structured as a 3-D translation (three-element vector) and a 3-D rotation
(quaternion).

tf = getTransform(tftree,targetframe,sourceframe,sourcetime) returns the
transformation from tftree at the given source time. If the transformation is not available at that
time, the function returns an error.

tf = getTransform(___ ,"Timeout",timeout) also specifies a timeout period, in seconds, to
wait for the transformation to be available. If the transformation does not become available in the
timeout period, the function returns an error. Use this syntax with any of the input arguments in
previous syntaxes.

BagSelection Object

tf = getTransform(bagSel,targetframe,sourceframe) returns the latest transformation
between two frames in the rosbag in bagSel. To get the bagSel input, load a rosbag using rosbag.

tf = getTransform(bagSel,targetframe,sourceframe,sourcetime) returns the
transformation at the specified sourcetime in the rosbag in bagSel.

rosbagreader Object

tf = getTransform(bagreader,targetframe,sourceframe) returns the latest transformation
between two frames in the rosbag in bagreader.

tf = getTransform(bagreader,targetframe,sourceframe,sourcetime) returns the
transformation at the specified sourcetime in the rosbag in bagreader.

 getTransform

1-39

Examples

Get ROS Transformations and Apply to ROS Messages

This example shows how to set up a ROS transformation tree and transform frames based on
transformation tree information. It uses time-buffered transformations to access transformations at
different times.

Create a ROS transformation tree. Use rosinit to connect to a ROS network. Replace ipaddress
with your ROS network address.

ipaddress = '192.168.17.129';
rosinit(ipaddress,11311)

Initializing global node /matlab_global_node_14346 with NodeURI http://192.168.17.1:56312/

tftree = rostf;
pause(1)

Look at the available frames on the transformation tree.

tftree.AvailableFrames

ans = 36×1 cell
 {'base_footprint' }
 {'base_link' }
 {'camera_depth_frame' }
 {'camera_depth_optical_frame'}
 {'camera_link' }
 {'camera_rgb_frame' }
 {'camera_rgb_optical_frame' }
 {'caster_back_link' }
 {'caster_front_link' }
 {'cliff_sensor_front_link' }
 {'cliff_sensor_left_link' }
 {'cliff_sensor_right_link' }
 {'gyro_link' }
 {'mount_asus_xtion_pro_link' }
 {'odom' }
 {'plate_bottom_link' }
 {'plate_middle_link' }
 {'plate_top_link' }
 {'pole_bottom_0_link' }
 {'pole_bottom_1_link' }
 {'pole_bottom_2_link' }
 {'pole_bottom_3_link' }
 {'pole_bottom_4_link' }
 {'pole_bottom_5_link' }
 {'pole_kinect_0_link' }
 {'pole_kinect_1_link' }
 {'pole_middle_0_link' }
 {'pole_middle_1_link' }
 {'pole_middle_2_link' }
 {'pole_middle_3_link' }
 ⋮

1 Functions

1-40

Check if the desired transformation is now available. For this example, check for the transformation
from 'camera_link' to 'base_link'.

canTransform(tftree,'base_link','camera_link')

ans = logical
 1

Get the transformation for 3 seconds from now. The getTransform function will wait until the
transformation becomes available with the specified timeout.

desiredTime = rostime('now') + 3;
tform = getTransform(tftree,'base_link','camera_link',...
 desiredTime,'Timeout',5);

Create a ROS message to transform. Messages can also be retrieved off the ROS network.

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_link';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

Transform the ROS message to the 'base_link' frame using the desired time previously saved.

tfpt = transform(tftree,'base_link',pt,desiredTime);

Optional: You can also use apply with the stored tform to apply this transformation to the pt
message.

tfpt2 = apply(tform,pt);

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_14346 with NodeURI http://192.168.17.1:56312/

Get Buffered Transformations from ROS Network

This example shows how to access time-buffered transformations on the ROS network. Access
transformations for specific times and modify the BufferTime property based on your desired times.

Create a ROS transformation tree. Use rosinit to connect to a ROS network. Replace ipaddress
with your ROS network address.

ipaddress = '192.168.17.129';
rosinit(ipaddress,11311)

Initializing global node /matlab_global_node_78006 with NodeURI http://192.168.17.1:56344/

tftree = rostf;
pause(2);

Get the transformation from 1 second ago.

 getTransform

1-41

desiredTime = rostime('now') - 1;
tform = getTransform(tftree,'base_link','camera_link',desiredTime);

The transformation buffer time is 10 seconds by default. Modify the BufferTime property of the
transformation tree to increase the buffer time and wait for that buffer to fill.

tftree.BufferTime = 15;
pause(15);

Get the transformation from 12 seconds ago.

desiredTime = rostime('now') - 12;
tform = getTransform(tftree,'base_link','camera_link',desiredTime);

You can also get transformations at a time in the future. The getTransform function will wait until
the transformation is available. You can also specify a timeout to error if no transformation is found.
This example waits 5 seconds for the transformation at 3 seconds from now to be available.

desiredTime = rostime('now') + 3;
tform = getTransform(tftree,'base_link','camera_link',desiredTime,'Timeout',5);

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_78006 with NodeURI http://192.168.17.1:56344/

Get Transformations from rosbag File

Get transformations from rosbag (.bag) files by loading the rosbag and checking the available
frames. From these frames, use getTransform to query the transformation between two coordinate
frames.

Load the rosbag.

bag = rosbag('ros_turtlesim.bag');

Get a list of available frames.

frames = bag.AvailableFrames;

Get the latest transformation between two coordinate frames.

tf = getTransform(bag,'world',frames{1});

Check for a transformation available at a specific time and retrieve the transformation. Use
canTransform to check if the transformation is available. Specify the time using rostime.

tfTime = rostime(bag.StartTime + 1);
if (canTransform(bag,'world',frames{1},tfTime))
 tf2 = getTransform(bag,'world',frames{1},tfTime);
end

1 Functions

1-42

Get Transformations from rosbag File Using rosbagreader Object

Get transformations from rosbag (.bag) files by loading the rosbag and checking the available
frames. From these frames, use getTransform to query the transformation between two coordinate
frames.

Load the rosbag.

bagMsgs = rosbagreader("ros_turtlesim.bag")

bagMsgs =
 rosbagreader with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\14\tp4aa60852\ros-ex81142742\ros_turtlesim.bag'
 StartTime: 1.5040e+09
 EndTime: 1.5040e+09
 NumMessages: 6089
 AvailableTopics: [6x3 table]
 AvailableFrames: {2x1 cell}
 MessageList: [6089x4 table]

Get a list of available frames.

frames = bagMsgs.AvailableFrames

frames = 2x1 cell
 {'turtle1'}
 {'world' }

Get the latest transformation between two coordinate frames.

tf = getTransform(bagMsgs,'world',frames{1})

tf =
 ROS TransformStamped message with properties:

 MessageType: 'geometry_msgs/TransformStamped'
 Header: [1x1 Header]
 Transform: [1x1 Transform]
 ChildFrameId: 'turtle1'

 Use showdetails to show the contents of the message

Check for a transformation available at a specific time and retrieve the transformation. Use
canTransform to check if the transformation is available. Specify the time using rostime.

tfTime = rostime(bagMsgs.StartTime + 1);
if (canTransform(bagMsgs,'world',frames{1},tfTime))
 tf2 = getTransform(bagMsgs,'world',frames{1},tfTime);
end

 getTransform

1-43

Input Arguments
tftree — ROS transformation tree
TransformationTree object

ROS transformation tree, specified as a TransformationTree object. You can create a
transformation tree by calling the rostf function.

bagSel — Selection of rosbag messages
BagSelection object

Selection of rosbag messages, specified as a BagSelection object. To create a selection of rosbag
messages, use rosbag.

bagreader — Index of messages in rosbag
rosbagreader object

Index of the messages in the rosbag, specified as a rosbagreader object.

targetframe — Target coordinate frame
string scalar | character vector

Target coordinate frame, specified as a string scalar or character vector. You can view the available
frames for transformation by calling tftree.AvailableFrames.

sourceframe — Initial coordinate frame
string scalar | character vector

Initial coordinate frame, specified as a string scalar or character vector. You can view the available
frames for transformation by calling tftree.AvailableFrames.

sourcetime — ROS or system time
Time object handle

ROS or system time, specified as a Time object handle. By default, sourcetime is the ROS
simulation time published on the clock topic. If you set the use_sim_time ROS parameter to true,
sourcetime returns the system time. You can create a Time object using rostime.

timeout — Timeout for receiving transform
0 (default) | scalar in seconds

Timeout for receiving the transform, specified as a scalar in seconds. The function returns an error if
the timeout is reached and no transform becomes available.

Output Arguments
tf — Transformation between coordinate frames
TransformStamped object handle

Transformation between coordinate frames, returned as a TransformStamped object handle.
Transformations are structured as a 3-D translation (three-element vector) and a 3-D rotation
(quaternion).

1 Functions

1-44

Version History
Introduced in R2019b

Empty Transforms
Behavior changed in R2018a

The behavior of getTransform changed in R2018a. When using the tftree input argument, the
function no longer returns an empty transform when the transform is unavailable and no
sourcetime is specified. If getTransform waits for the specified timeout period and the transform
is still not available, the function returns an error. The timeout period is 0 by default.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the syntaxes with TransformationTree object as input.
• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
transform | waitForTransform | rostf | canTransform | rosbag | rosbagreader

 getTransform

1-45

has
Check if ROS parameter name exists

Syntax
exists = has(ptree,paramname)

Description
exists = has(ptree,paramname) checks if the parameter with name paramname exists in the
parameter tree, ptree.

Examples

Check If ROS Parameter Exists

Connect to a ROS network. Create a parameter tree and check for the 'MyParam' parameter.

rosinit

Launching ROS Core...
...Done in 3.3097 seconds.
Initializing ROS master on http://172.30.131.134:52326.
Initializing global node /matlab_global_node_55561 with NodeURI http://bat6234win64:50077/ and MasterURI http://localhost:52326.

ptree = rosparam;
has(ptree,'MyParam')

ans = logical
 0

Set the 'MyParam' parameter and verify it exists. Disconnect from ROS network.

set(ptree,'MyParam','test')
has(ptree,'MyParam')

ans = logical
 1

rosshutdown

Shutting down global node /matlab_global_node_55561 with NodeURI http://bat6234win64:50077/ and MasterURI http://localhost:52326.
Shutting down ROS master on http://172.30.131.134:52326.

Input Arguments
ptree — Parameter tree
ParameterTree object handle

1 Functions

1-46

Parameter tree, specified as a ParameterTree object handle. Create this object using the rosparam
function.

paramname — ROS parameter name
string scalar | character vector

ROS parameter name, specified as a string scalar or character vector. This string must match the
parameter name exactly.

Output Arguments
exists — Flag indicating whether the parameter exists
true | false

Flag indicating whether the parameter exists, returned as true or false.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
get | search | set | rosparam

 has

1-47

isCoreRunning
Determine if ROS core is running

Syntax
running = isCoreRunning(device)

Description
running = isCoreRunning(device) determines if the ROS core is running on the connected
device.

Examples

Run ROS Core on ROS Device

Connect to a remote ROS device and start a ROS core. The ROS core is needed to run ROS nodes to
communicate via a ROS network. You can run and stop a ROS core or node and check their status
using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of your specific
ROS device. The device contains information about the ROS device, including the available ROS
nodes that can be run using runNode.

ipaddress = '192.168.203.131';
d = rosdevice(ipaddress,'user','password')

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.131'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws'
 AvailableNodes: {'voxel_grid_filter_sl'}

Run a ROS core and check if it is running.

runCore(d)

Another roscore / ROS master is already running on the ROS device. Use the 'stopCore' function to stop it.

running = isCoreRunning(d)

running = logical
 1

Stop the ROS core and confirm that it is no longer running.

1 Functions

1-48

stopCore(d)
pause(2)
running = isCoreRunning(d)

running = logical
 0

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

Output Arguments
running — Status of whether ROS core is running
true | false

Status of whether ROS core is running, returned as true or false.

Version History
Introduced in R2019b

See Also
rosdevice | runCore | stopCore

Topics
“Generate a Standalone ROS Node from Simulink”

 isCoreRunning

1-49

isNodeRunning
Determine if ROS or ROS 2 node is running

Syntax
running = isNodeRunning(device,modelName)

Description
running = isNodeRunning(device,modelName) determines if the ROS or ROS 2 node
associated with the specified Simulink® model is running on the specified rosdevice or
ros2device, device.

Examples

Run ROS Node on ROS Device

Connect to a remote ROS device and start a ROS node. Run a ROS core so that ROS nodes can
communicate via a ROS network. You can run and stop a ROS core or node and check their status
using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of your specific
ROS device. The device already contains the available ROS nodes that can be run using runNode.

ipaddress = '192.168.203.129';
d = rosdevice(ipaddress,'user','password');
d.ROSFolder = '/opt/ros/indigo';
d.CatkinWorkspace = '~/catkin_ws_test'

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.129'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. Connect MATLAB® to the ROS master using rosinit. This core enables you to run
ROS nodes on your ROS device.

runCore(d)
rosinit(d.DeviceAddress,11311)

Initializing global node /matlab_global_node_84497 with NodeURI http://192.168.203.1:56034/

Check the available ROS nodes on the connected ROS device. These nodes listed were generated
from Simulink® models following the process in the “Get Started with ROS in Simulink” example.

d.AvailableNodes

1 Functions

1-50

ans = 1×2 cell
 {'robotcontroller'} {'robotcontroller2'}

Run a ROS node and specify the node name. Check if the node is running.

runNode(d,'RobotController')
running = isNodeRunning(d,'RobotController')

running = logical
 1

Stop the ROS node. Disconnect from the ROS network. Stop the ROS core.

stopNode(d,'RobotController')
rosshutdown

Shutting down global node /matlab_global_node_84497 with NodeURI http://192.168.203.1:56034/

stopCore(d)

Input Arguments
device — ROS or ROS 2 device
rosdevice object | ros2device object

ROS or ROS 2 device, specified as a rosdevice or ros2device object, respectively.

modelName — Name of the deployed Simulink model
character vector

Name of the deployed Simulink model, specified as a character vector. If the model name is not valid,
the function returns false.

Output Arguments
running — Status of whether the ROS or ROS 2 node is running
true | false

Status of whether the ROS or ROS 2 node is running, returned as true or false.

Version History
Introduced in R2019b

See Also
rosdevice | ros2device | runNode | stopNode

Topics
“Generate a Standalone ROS Node from Simulink”
“Generate a Standalone ROS 2 Node from Simulink”

 isNodeRunning

1-51

isServerAvailable
Determine if ROS or ROS 2 service server is available

Syntax
status = isServerAvailable(client)

Description
status = isServerAvailable(client) determines whether a service server with the same
service name as client is available and returns a status accordingly.

Examples

Call Service Client with Default Message

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.2861 seconds.
Initializing ROS master on http://172.30.131.134:53576.
Initializing global node /matlab_global_node_51384 with NodeURI http://bat6234win64:49973/ and MasterURI http://localhost:53576.

Set up a service server. Use structures for the ROS message data format.

server = rossvcserver('/test', 'std_srvs/Empty', @exampleHelperROSEmptyCallback,...
 'DataFormat','struct');
client = rossvcclient('/test','DataFormat','struct');

Check whether the service server is available. If it is, wait for the service client to connect to the
server.

if(isServerAvailable(client))
 [connectionStatus,connectionStatustext] = waitForServer(client)
end

connectionStatus = logical
 1

connectionStatustext =
'success'

Call service server with default message.

response = call(client)

response = struct with fields:
 MessageType: 'std_srvs/EmptyResponse'

1 Functions

1-52

If the call function above fails, it results in an error. Instead of an error, if you would prefer to react
to a call failure using conditionals, return the status and statustext outputs from the call
function. The status output indicates if the call succeeded, while statustext provides additional
information.

numCallFailures = 0;
[response,status,statustext] = call(client,"Timeout",3);
if ~status
 numCallFailures = numCallFailues + 1;
 fprintf("Call failure number %d. Error cause: %s\n",numCallFailures,statustext)
else
 disp(response)
end

 MessageType: 'std_srvs/EmptyResponse'

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_51384 with NodeURI http://bat6234win64:49973/ and MasterURI http://localhost:53576.
Shutting down ROS master on http://172.30.131.134:53576.

Call ROS 2 Service Client With a Custom Callback Function

Create a sample ROS 2 network with two nodes.

node_1 = ros2node('node_1_service_client');
node_2 = ros2node('node_2_service_client');

Set up a service server and attach it to a ROS 2 node. Specify the callback function flipstring,
which flips the input string. The callback function is defined at the end of this example.

server = ros2svcserver(node_1,'/test','test_msgs/BasicTypes',@flipString);

Set up a service client of the same service type and attach it to a different node.

client = ros2svcclient(node_2,'/test','test_msgs/BasicTypes');

Wait for the service client to connect to the server.

[connectionStatus,connectionStatustext] = waitForServer(client)

connectionStatus = logical
 1

connectionStatustext =
'success'

Create a request message based on the client. Assign the string to the corresponding field in the
message, string_value.

request = ros2message(client);
request.string_value = 'hello world';

 isServerAvailable

1-53

Check whether the service server is available. If it is, send a service request and wait for a response.
Specify that the service waits 3 seconds for a response.

if(isServerAvailable(client))
 response = call(client,request,'Timeout',3);
end

The response is a flipped string from the request message which you see in the string_value field.

response.string_value

ans =
'dlrow olleh'

If the call function above fails, it results in an error. Instead of an error, if you would prefer to react
to a call failure using conditionals, return the status and statustext outputs from the call
function. The status output indicates if the call succeeded, while statustext provides additional
information.

numCallFailures = 0;
[response,status,statustext] = call(client,request,"Timeout",3);
if ~status
 numCallFailures = numCallFailues + 1;
 fprintf("Call failure number %d. Error cause: %s\n",numCallFailures,statustext)
else
 disp(response.string_value)
end

dlrow olleh

The callback function used to flip the string is defined below.

function resp = flipString(req,resp)
% FLIPSTRING Reverses the order of a string in REQ and returns it in RESP.
resp.string_value = fliplr(req.string_value);
end

Input Arguments
client — ROS service client
ros.ServiceClient object handle | ros2serviceclient object handle

ROS or ROS 2 service client, specified as a ros.ServiceClient or ros2serviceclient object
handle, respectively. This service client enables you to send requests to the service server.

Output Arguments
status — Status of service server availability
logical scalar

Status of service server availability, returned as a logical scalar. If a server of the same name and
type as client is not available, status will be false.

1 Functions

1-54

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
rossvcclient | rossvcserver | ros2svcclient | ros2svcserver | call | rosservice

Topics
“Call and Provide ROS Services”
“Call and Provide ROS 2 Services”

 isServerAvailable

1-55

openShell
Open interactive command shell to device

Syntax
openShell(device)

Description
openShell(device) opens an SSH terminal on your host computer that provides encrypted access
to the Linux® command shell on the ROS or ROS 2 device. When prompted, enter a user name and
password.

Examples

Open Command Shell on ROS Device

Connect to a ROS device and open the command shell on your host computer.

Connect to a ROS device. Specify the device address, user name, and password of your ROS device.

d = rosdevice('192.168.17.128','user','password');

Open the command shell.

openShell(d);

1 Functions

1-56

Input Arguments
device — ROS or ROS 2 device
rosdevice object | ros2device object

ROS or ROS 2 device, specified as a rosdevice or ros2device object, respectively.

Version History
Introduced in R2019b

See Also
rosdevice | ros2device | putFile | getFile | deleteFile | dir | system

 openShell

1-57

plot
Display laser or lidar scan readings

Syntax
plot(scanMsg)
plot(scanObj)
plot(___ ,Name,Value)
linehandle = plot(___)

Description
plot(scanMsg) plots the laser scan readings specified in the input LaserScan object message.
Axes are automatically scaled to the maximum range that the laser scanner supports.

Note plot will be removed. Use instead. For more information, see “ROS Message Structure
Functions” on page 1-63

plot(scanObj) plots the lidar scan readings specified in scanObj.

plot(___ ,Name,Value) provides additional options specified by one or more Name,Value pair
arguments.

linehandle = plot(___) returns a column vector of line series handles, using any of the
arguments from previous syntaxes. Use linehandle to modify properties of the line series after it is
created.

When plotting ROS laser scan messages, MATLAB follows the standard ROS convention for axis
orientation. This convention states that positive x is forward, positive y is left, and positive z is
up. For more information, see Axis Orientation on the ROS Wiki.

Examples

Plot Laser Scan Message

Connect to ROS network. Subscribe to a laser scan topic, and receive a message.

rosinit('192.168.17.129')

Initializing global node /matlab_global_node_90279 with NodeURI http://192.168.17.1:50889/

sub = rossubscriber('/scan');
scan = receive(sub);

Plot the laser scan.

plot(scan)

1 Functions

1-58

https://www.ros.org/reps/rep-0103.html#axis-orientation

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_90279 with NodeURI http://192.168.17.1:50889/

Plot Laser Scan Message With Maximum Range

Connect to ROS network. Subscribe to a laser scan topic, and receive a message.

rosinit('192.168.17.129')

Initializing global node /matlab_global_node_31712 with NodeURI http://192.168.17.1:51463/

sub = rossubscriber('/scan');
scan = receive(sub);

Plot the laser scan specifying the maximum range.

plot(scan,'MaximumRange',6)

 plot

1-59

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_31712 with NodeURI http://192.168.17.1:51463/

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensor range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)

1 Functions

1-60

Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')

 plot

1-61

Input Arguments
scanMsg — Laser scan message
LaserScan object handle

sensor_msgs/LaserScan ROS message, specified as a LaserScan object handle.

scanObj — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "MaximumRange",5

Parent — Parent of axes
axes object

1 Functions

1-62

Parent of axes, specified as the comma-separated pair consisting of "Parent" and an axes object in
which the laser scan is drawn. By default, the laser scan is plotted in the currently active axes.

MaximumRange — Range of laser scan
scan.RangeMax (default) | scalar

Range of laser scan, specified as the comma-separated pair consisting of "MaximumRange" and a
scalar. When you specify this name-value pair argument, the minimum and maximum x-axis and the
maximum y-axis limits are set based on a specified value. The minimum y-axis limit is automatically
determined by the opening angle of the laser scanner.

This name-value pair works only when you input scanMsg as the laser scan.

Outputs
linehandle — One or more chart line objects
scalar | vector

One or more chart line objects, returned as a scalar or a vector. These are unique identifiers, which
you can use to query and modify properties of a specific chart line.

Version History
Introduced in R2019b

ROS Message Structure Functions
Not recommended starting in R2021a

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To support message structures as inputs, new functions that operate on specialized ROS messages
have been provided. These new functions are based on the existing object functions of message
objects, but support ROS and ROS 2 message structures as inputs instead of message objects.

The object functions will be removed in a future release.

Message Types Object Function Name New Function Name
Image

CompressedImage

readImage

writeImage

rosReadImage

rosWriteImage
LaserScan readCartesian

readScanAngles

lidarScan

plot

rosReadCartesian

rosReadScanAngles

rosReadLidarScan

rosPlot

 plot

1-63

Message Types Object Function Name New Function Name
PointCloud2 apply

readXYZ

readRGB

readAllFieldNames

readField

scatter3

rosApplyTransform

rosReadXYZ

rosReadRGB

rosReadAllFieldNames

rosReadField

rosPlot
Quaternion readQuaternion rosReadQuaternion
OccupancyGrid readBinaryOccupanyGrid

readOccupancyGrid

writeBinaryOccupanyGrid

writeOccupanyGrid

rosReadOccupancyGrid

rosReadBinaryOccupancyGr
id

rosReadOccupancyGrid

rosWriteBinaryOccupancyG
rid

rosWriteOccupancyGrid
Octomap readOccupancyMap3D rosReadOccupancyMap3D
PointStamped

PoseStamped

QuaternionStamped

Vector3Stamped

TransformStamped

apply rosApplyTransform

All messages showdetails rosShowDetails

See Also
rosReadLidarScan | rosReadCartesian | rosPlot

1 Functions

1-64

putFile
Copy file to device

Syntax
putFile(device,localSource)
putFile(device,localSource,remoteDestination)

Description
putFile(device,localSource) copies the specified source file from the MATLAB current folder
to the print working directory (pwd) on the ROS device or the home directory on the ROS 2 device.
Wildcards are supported.

putFile(device,localSource,remoteDestination) copies the file to a destination path.
Specify a file name at the end of the destination path to copy with a custom file name.

Examples

Put, Get, and Delete Files on ROS Device

Put a file from your host computer onto a ROS device, get it back, and then delete it.

Connect to a ROS device. Specify the device address, user name, and password of your ROS device.

d = rosdevice('192.168.17.128','user','password');

Put a new text file that is in the MATLAB(R) current folder onto the ROS device. The destination
folder must exist.

putFile(d,'test_file.txt','/home/user/test_folder')

Get a text file from the ROS device. You can get any file, not just ones added from MATLAB(R). By
default, the file is added to the MATLAB current folder.

getFile(d,'/home/user/test_folder/test_file.txt')

Delete the text file on the ROS device.

deleteFile(d,'/home/user/test_folder/test_file.txt')

Put, Get, and Delete Files on ROS Device Using Wildcards

Put a file from your host computer onto a ROS device, get it back, and then delete it. Use wildcards to
search for all matching files.

Note: You must have a valid ROS device to connect to at the IP address specified in the example.

 putFile

1-65

Connect to a ROS device. Specify the device address, user name, and password of your ROS device.

d = rosdevice('192.168.17.128','user','password');

Put all text files at the specified path onto the ROS device. The destination folder must exist.

putFile(d,'C:/MATLAB/*.txt','/home/user/test_folder')

Get all text files from the ROS device. You can get any files, not just ones added from MATLAB(R). By
default, the files are added to the MATLAB current folder.

getFile(d,'/home/user/test_folder/*.txt')

Delete all text files on the ROS device at the specified folder.

deleteFile(d,'/home/user/test_folder/*.txt')

Input Arguments
device — ROS or ROS 2 device
rosdevice object | ros2device object

ROS or ROS 2 device, specified as a rosdevice or ros2device object, respectively.

localSource — Path and name of file on host computer
character vector

Path and name of the file on the host computer, specified as a character vector. You can use an
absolute path or a path relative from the MATLAB current folder. Use the path and file naming
conventions of the operating system on your host computer.
Example: 'C:\Work\.profile'
Data Types: char

remoteDestination — Destination folder path and optional file name
character vector

Destination folder path and optional file name, specified as a character vector. Specify a file name at
the end of the destination path to copy with a custom file name. Use the Linux path and file naming
conventions.
Example: '/home/user/.profile'
Data Types: char

Version History
Introduced in R2019b

See Also
rosdevice | ros2device | getFile | deleteFile | dir | openShell | system

1 Functions

1-66

readAllFieldNames
Get all available field names from ROS point cloud

Syntax
fieldnames = readAllFieldNames(pcloud)

Description
fieldnames = readAllFieldNames(pcloud) gets the names of all point fields that are stored in
the PointCloud2 object message, pcloud, and returns them in fieldnames.

Note readAllFieldNames will be removed. Use rosReadAllFieldNames instead. For more
information, see “ROS Message Structure Functions” on page 1-68

Examples

Read All Fields From Point Cloud Message

Load sample ROS messages including a ROS point cloud message, ptcloud.

exampleHelperROSLoadMessages

Read all the field names available on the point cloud message.

fieldnames = readAllFieldNames(ptcloud)

fieldnames = 1x4 cell
 {'x'} {'y'} {'z'} {'rgb'}

Input Arguments
pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/PointCloud2' ROS
message.

Output Arguments
fieldnames — List of field names in PointCloud2 object
cell array of character vectors

List of field names in PointCloud2 object, returned as a cell array of character vectors. If no fields
exist in the object, fieldname returns an empty cell array.

 readAllFieldNames

1-67

Version History
Introduced in R2019b

ROS Message Structure Functions
Not recommended starting in R2021a

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To support message structures as inputs, new functions that operate on specialized ROS messages
have been provided. These new functions are based on the existing object functions of message
objects, but support ROS and ROS 2 message structures as inputs instead of message objects.

The object functions will be removed in a future release.

Message Types Object Function Name New Function Name
Image

CompressedImage

readImage

writeImage

rosReadImage

rosWriteImage
LaserScan readCartesian

readScanAngles

lidarScan

plot

rosReadCartesian

rosReadScanAngles

rosReadLidarScan

rosPlot
PointCloud2 apply

readXYZ

readRGB

readAllFieldNames

readField

scatter3

rosApplyTransform

rosReadXYZ

rosReadRGB

rosReadAllFieldNames

rosReadField

rosPlot
Quaternion readQuaternion rosReadQuaternion
OccupancyGrid readBinaryOccupanyGrid

readOccupancyGrid

writeBinaryOccupanyGrid

writeOccupanyGrid

rosReadOccupancyGrid

rosReadBinaryOccupancyGr
id

rosReadOccupancyGrid

rosWriteBinaryOccupancyG
rid

rosWriteOccupancyGrid
Octomap readOccupancyMap3D rosReadOccupancyMap3D

1 Functions

1-68

Message Types Object Function Name New Function Name
PointStamped

PoseStamped

QuaternionStamped

Vector3Stamped

TransformStamped

apply rosApplyTransform

All messages showdetails rosShowDetails

See Also
rosReadXYZ | rosReadField | rosReadRGB | rosReadCartesian

 readAllFieldNames

1-69

readBinaryOccupancyGrid
Read binary occupancy grid

Syntax
map = readBinaryOccupancyGrid(msg)
map = readBinaryOccupancyGrid(msg,thresh)
map = readBinaryOccupancyGrid(msg,thresh,val)

Description
map = readBinaryOccupancyGrid(msg) returns a object by reading the data inside a ROS
message, msg, which must be a 'nav_msgs/OccupancyGrid' message. All message data values
greater than or equal to the occupancy threshold are set to occupied, 1, in the map. All other values,
including unknown values (-1) are set to unoccupied, 0, in the map.

map = readBinaryOccupancyGrid(msg,thresh) specifies a threshold, thresh, for occupied
values. All values greater than or equal to the threshold are set to occupied, 1. All other values are
set to unoccupied, 0.

map = readBinaryOccupancyGrid(msg,thresh,val) specifies a value to set for unknown
values (-1). By default, all unknown values are set to unoccupied, 0.

Input Arguments
msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object handle.

thresh — Threshold for occupied values
50 (default) | scalar

Threshold for occupied values, specified as a scalar. Any value greater than or equal to the threshold
is set to occupied, 1. All other values are set to unoccupied, 0.
Data Types: double

val — Value to replace unknown values
0 (default) | 1

Value to replace unknown values, specified as either 0 or 1. Unknown message values (-1) are set to
the given value.
Data Types: double | logical

Output Arguments
map — Binary occupancy grid
binaryOccupancyMap object handle

1 Functions

1-70

Binary occupancy grid, returned as a object handle. map is converted from a 'nav_msgs/
OccupancyGrid' message on the ROS network. The object is a grid of binary values, where 1
indicates an occupied location and 0 indications an unoccupied location.

Version History
Introduced in R2015a

See Also
Objects
OccupancyGrid | occupancyMap

Functions
rosReadOccupancyGrid | rosWriteBinaryOccupancyGrid | rosWriteOccupancyGrid

 readBinaryOccupancyGrid

1-71

readCartesian
Read laser scan ranges in Cartesian coordinates

Syntax
cart = readCartesian(scan)
cart = readCartesian(___ ,Name,Value)
[cart,angles] = readCartesian(___)

Description
cart = readCartesian(scan) converts the polar measurements of the laser scan object, scan,
into Cartesian coordinates, cart. This function uses the metadata in the message, such as angular
resolution and opening angle of the laser scanner, to perform the conversion. Invalid range readings,
usually represented as NaN, are ignored in this conversion.

Note readCartesian will be removed. Use rosReadCartesian instead. For more information, see
“ROS Message Structure Functions” on page 1-75

cart = readCartesian(___ ,Name,Value) provides additional options specified by one or more
Name,Value pair arguments. Name must appear inside single quotes (''). You can specify several
name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

[cart,angles] = readCartesian(___) returns the scan angles, angles, that are associated
with each Cartesian coordinate. Angles are measured counterclockwise around the positive z-axis,
with the zero angle along the x-axis. The angles is returned in radians and wrapped to the [–pi, pi]
interval.

Examples

Get Cartesian Coordinates from Laser Scan

Connect to ROS network. Subscribe to a laser scan topic, and receive a message.

rosinit('192.168.17.129')

Initializing global node /matlab_global_node_40737 with NodeURI http://192.168.17.1:56343/

sub = rossubscriber('/scan');
scan = receive(sub);

Read the Cartesian points from the laser scan. Plot the laser scan.

cart = readCartesian(scan);
plot(cart(:,1),cart(:,2))

1 Functions

1-72

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_40737 with NodeURI http://192.168.17.1:56343/

Get Cartesian Coordinates from Laser Scan With Scan Range

Connect to ROS network. Subscribe to a laser scan topic, and receive a message.

rosinit('192.168.17.129')

Initializing global node /matlab_global_node_12735 with NodeURI http://192.168.17.1:56572/

sub = rossubscriber('/scan');
scan = receive(sub);

Read the Cartesian points from the laser scan with specified range limits. Plot the laser scan.

cart = readCartesian(scan,'RangeLimit',[0.5 6]);
plot(cart(:,1),cart(:,2))

 readCartesian

1-73

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_12735 with NodeURI http://192.168.17.1:56572/

Input Arguments
scan — Laser scan message
LaserScan object handle

'sensor_msgs/LaserScan' ROS message, specified as a LaserScan object handle.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RangeLimits',[-2 2]

RangeLimits — Minimum and maximum range for scan in meters
[scan.RangeMin scan.RangeMax] (default) | 2-element [min max] vector

1 Functions

1-74

Minimum and maximum range for a scan in meters, specified as a 2-element [min max] vector. All
ranges smaller than min or larger than max are ignored during the conversion to Cartesian
coordinates.

Output Arguments
cart — Cartesian coordinates of laser scan
n–by–2 matrix in meters

Cartesian coordinates of laser scan, returned as an n-by-2 matrix in meters.

angles — Scan angles for laser scan data
n–by–1 matrix in radians

Scan angles for laser scan data, returned as an n-by-1 matrix in radians. Angles are measured
counterclockwise around the positive z-axis, with the zero angle along the x-axis. The angles is
returned in radians and wrapped to the [–pi, pi] interval.

Version History
Introduced in R2019b

ROS Message Structure Functions
Not recommended starting in R2021a

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To support message structures as inputs, new functions that operate on specialized ROS messages
have been provided. These new functions are based on the existing object functions of message
objects, but support ROS and ROS 2 message structures as inputs instead of message objects.

The object functions will be removed in a future release.

Message Types Object Function Name New Function Name
Image

CompressedImage

readImage

writeImage

rosReadImage

rosWriteImage
LaserScan readCartesian

readScanAngles

lidarScan

plot

rosReadCartesian

rosReadScanAngles

rosReadLidarScan

rosPlot

 readCartesian

1-75

Message Types Object Function Name New Function Name
PointCloud2 apply

readXYZ

readRGB

readAllFieldNames

readField

scatter3

rosApplyTransform

rosReadXYZ

rosReadRGB

rosReadAllFieldNames

rosReadField

rosPlot
Quaternion readQuaternion rosReadQuaternion
OccupancyGrid readBinaryOccupanyGrid

readOccupancyGrid

writeBinaryOccupanyGrid

writeOccupanyGrid

rosReadOccupancyGrid

rosReadBinaryOccupancyGr
id

rosReadOccupancyGrid

rosWriteBinaryOccupancyG
rid

rosWriteOccupancyGrid
Octomap readOccupancyMap3D rosReadOccupancyMap3D
PointStamped

PoseStamped

QuaternionStamped

Vector3Stamped

TransformStamped

apply rosApplyTransform

All messages showdetails rosShowDetails

See Also
rosReadCartesian | rosReadXYZ | rosPlot

1 Functions

1-76

readField
Read point cloud data based on field name

Syntax
fielddata = readField(pcloud,fieldname)

Description
fielddata = readField(pcloud,fieldname) reads the point field from the PointCloud2
object, pcloud, specified by fieldname and returns it in fielddata. If fieldname does not exist,
the function displays an error. To preserve the structure of the point cloud data, see “Preserving Point
Cloud Structure” on page 1-78.

Note readField will be removed. Use rosReadField instead. For more information, see “ROS
Message Structure Functions” on page 1-78

Examples

Read Specific Field From Point Cloud Message

Load sample ROS messages including a ROS point cloud message, ptcloud.

exampleHelperROSLoadMessages

Read the 'x' field name available on the point cloud message.

x = readField(ptcloud,'x');

Input Arguments
pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a sensor_msgs/PointCloud2 ROS
message.

fieldname — Field name of point cloud data
string scalar | character vector

Field name of point cloud data, specified as a string scalar or character vector. This string must
match the field name exactly. If fieldname does not exist, the function displays an error.

Output Arguments
fielddata — List of field values from point cloud
matrix

 readField

1-77

List of field values from point cloud, returned as a matrix. Each row of the matrix is a point cloud
reading, where n is the number of points and c is the number of values for each point. If the point
cloud object being read has the PreserveStructureOnRead property set to true, the points are
returned as an h-by-w-by-c matrix. For more information, see “Preserving Point Cloud Structure” on
page 1-78.

Preserving Point Cloud Structure
Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image styles usually
come from depth sensors or stereo cameras. The input PointCloud2 object contains a
PreserveStructureOnRead property that is either true or false (default). Suppose you set the
property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the organizational
structure of the point cloud. When you preserve the structure, the output matrices are of size m-by-n-
by-d, where m is the height, n is the width, and d is the number of return values for each point.
Otherwise, all points are returned as a x-by-d list. This structure can be preserved only if the point
cloud is organized.

Version History
Introduced in R2019b

ROS Message Structure Functions
Not recommended starting in R2021a

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To support message structures as inputs, new functions that operate on specialized ROS messages
have been provided. These new functions are based on the existing object functions of message
objects, but support ROS and ROS 2 message structures as inputs instead of message objects.

The object functions will be removed in a future release.

Message Types Object Function Name New Function Name
Image

CompressedImage

readImage

writeImage

rosReadImage

rosWriteImage
LaserScan readCartesian

readScanAngles

lidarScan

plot

rosReadCartesian

rosReadScanAngles

rosReadLidarScan

rosPlot

1 Functions

1-78

Message Types Object Function Name New Function Name
PointCloud2 apply

readXYZ

readRGB

readAllFieldNames

readField

scatter3

rosApplyTransform

rosReadXYZ

rosReadRGB

rosReadAllFieldNames

rosReadField

rosPlot
Quaternion readQuaternion rosReadQuaternion
OccupancyGrid readBinaryOccupanyGrid

readOccupancyGrid

writeBinaryOccupanyGrid

writeOccupanyGrid

rosReadOccupancyGrid

rosReadBinaryOccupancyGr
id

rosReadOccupancyGrid

rosWriteBinaryOccupancyG
rid

rosWriteOccupancyGrid
Octomap readOccupancyMap3D rosReadOccupancyMap3D
PointStamped

PoseStamped

QuaternionStamped

Vector3Stamped

TransformStamped

apply rosApplyTransform

All messages showdetails rosShowDetails

See Also
PointCloud2 | readAllFieldNames

 readField

1-79

readImage
Convert ROS image data into MATLAB image

Syntax
img = readImage(msg)
[img,alpha] = readImage(msg)

Description
img = readImage(msg) converts the raw image data in the message object, msg, into an image
matrix, img. You can call readImage using either 'sensor_msgs/Image' or 'sensor_msgs/
CompressedImage' messages.

ROS image message data is stored in a format that is not compatible with further image processing in
MATLAB. Based on the specified encoding, this function converts the data into an appropriate
MATLAB image and returns it in img.

Note readImage will be removed. Use rosReadImage instead. For more information, see “ROS
Message Structure Functions” on page 1-82

[img,alpha] = readImage(msg) returns the alpha channel of the image in alpha. If the image
does not have an alpha channel, then alpha is empty.

Examples

Read ROS Image Data

Load sample ROS messages including a ROS image message, img.

exampleHelperROSLoadMessages

Read the ROS image message as a MATLAB® image.

image = readImage(img);

Display the image.

imshow(image)

1 Functions

1-80

Input Arguments
msg — ROS image message
Image object handle | CompressedImage object handle

'sensor_msgs/Image' or 'sensor_msgs/CompressedImage' ROS image message, specified as
an Image or Compressed Image object handle.

Output Arguments
img — Image
grayscale image matrix | RGB image matrix | m-by-n-by-3 array

Image, returned as a matrix representing a grayscale or RGB image or as an m-by-n-by-3 array,
depending on the sensor image.

alpha — Alpha channel
uint8 grayscale image

Alpha channel, returned as a uint8 grayscale image. If no alpha channel exists, alpha is empty.

 readImage

1-81

Note For CompressedImage messages, you cannot output an Alpha channel.

Supported Image Encodings
ROS image messages can have different encodings. The encodings supported for images are different
for 'sensor_msgs/Image' and 'sensor_msgs/CompressedImage' message types. Fewer
compressed images are supported. The following encodings for raw images of size M-by-N are
supported using the 'sensor_msgs/Image' message type ('sensor_msgs/CompressedImage'
support is in bold):

• rgb8, rgba8, bgr8, bgra8: img is an rgb image of size M-by-N-by-3. The alpha channel is
returned in alpha. Each value in the outputs is represented as a uint8.

• rgb16, rgba16, bgr16, and bgra16: img is an RGB image of size M-by-N-by-3. The alpha
channel is returned in alpha. Each value in the output is represented as a uint16.

• mono8 images are returned as grayscale images of size M-by-N-by-1. Each pixel value is
represented as a uint8.

• mono16 images are returned as grayscale images of size M-by-N-by-1. Each pixel value is
represented as a uint16.

• 32fcX images are returned as floating-point images of size M-by-N-by-D, where D is 1, 2, 3, or 4.
Each pixel value is represented as a single.

• 64fcX images are returned as floating-point images of size M-by-N-by-D, where D is 1, 2, 3, or 4.
Each pixel value is represented as a double.

• 8ucX images are returned as matrices of size M-by-N-by-D, where D is 1, 2, 3, or 4. Each pixel
value is represented as a uint8.

• 8scX images are returned as matrices of size M-by-N-by-D, where D is 1, 2, 3, or 4. Each pixel
value is represented as a int8.

• 16ucX images are returned as matrices of size M-by-N-by-D, where D is 1, 2, 3, or 4. Each pixel
value is represented as a int16.

• 16scX images are returned as matrices of size M-by-N-by-D, where D is 1, 2, 3, or 4. Each pixel
value is represented as a int16.

• 32scX images are returned as matrices of size M-by-N-by-D, where D is 1, 2, 3, or 4. Each pixel
value is represented as a int32.

• bayer_X images are returned as either Bayer matrices of size M-by-N-by-1, or as a converted
image of size M-by-N-by-3 (Image Processing Toolbox™ is required).

The following encoding for raw images of size M-by-N is supported using the 'sensor_msgs/
CompressedImage' message type:

• rgb8, rgba8, bgr8, and bgra8: img is an rgb image of size M-by-N-by-3. The alpha channel
is returned in alpha. Each output value is represented as a uint8.

Version History
Introduced in R2019b

ROS Message Structure Functions
Not recommended starting in R2021a

1 Functions

1-82

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To support message structures as inputs, new functions that operate on specialized ROS messages
have been provided. These new functions are based on the existing object functions of message
objects, but support ROS and ROS 2 message structures as inputs instead of message objects.

The object functions will be removed in a future release.

Message Types Object Function Name New Function Name
Image

CompressedImage

readImage

writeImage

rosReadImage

rosWriteImage
LaserScan readCartesian

readScanAngles

lidarScan

plot

rosReadCartesian

rosReadScanAngles

rosReadLidarScan

rosPlot
PointCloud2 apply

readXYZ

readRGB

readAllFieldNames

readField

scatter3

rosApplyTransform

rosReadXYZ

rosReadRGB

rosReadAllFieldNames

rosReadField

rosPlot
Quaternion readQuaternion rosReadQuaternion
OccupancyGrid readBinaryOccupanyGrid

readOccupancyGrid

writeBinaryOccupanyGrid

writeOccupanyGrid

rosReadOccupancyGrid

rosReadBinaryOccupancyGr
id

rosReadOccupancyGrid

rosWriteBinaryOccupancyG
rid

rosWriteOccupancyGrid
Octomap readOccupancyMap3D rosReadOccupancyMap3D

 readImage

1-83

Message Types Object Function Name New Function Name
PointStamped

PoseStamped

QuaternionStamped

Vector3Stamped

TransformStamped

apply rosApplyTransform

All messages showdetails rosShowDetails

See Also
rosReadImage | rosWriteImage | rosReadRGB

1 Functions

1-84

readMessages
Read messages from rosbag

Syntax
msgs = readMessages(bag)
msgs = readMessages(bag,rows)
msgs = readMessages(___ ,"DataFormat",Format)

Description
msgs = readMessages(bag) returns data from all the messages in the BagSelection or
rosbagreader object bag. The messages are returned in a cell array of messages. To get a
BagSelection object, use rosbag.

msgs = readMessages(bag,rows) returns data from messages in the rows specified by rows. The
range of the rows is [1, bag.NumMessages].

msgs = readMessages(___ ,"DataFormat",Format) returns data as a cell array of structures
or cell array of message objects using either set of the previous input arguments. Specify Format as
either "struct" or "object".

Using structures can be significantly faster than using message objects, and custom message data
can be read directly without loading message definitions using rosgenmsg.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 1-89.

Examples

Return ROS Messages as a Cell Array

Read rosbag and filter by topic and time.

bagselect = rosbag('ex_multiple_topics.bag');
bagselect2 = select(bagselect,'Time',...
[bagselect.StartTime bagselect.StartTime + 1],'Topic','/odom');

Return all messages as a cell array.

allMsgs = readMessages(bagselect2);

Return the first ten messages as a cell array.

firstMsgs = readMessages(bagselect2,1:10);

 readMessages

1-85

Read Messages from a rosbag as a Structure

Load the rosbag.

bag = rosbag('ros_turtlesim.bag');

Select a specific topic.

bSel = select(bag,'Topic','/turtle1/pose');

Read messages as a structure. Specify the DataFormat name-value pair when reading the messages.
Inspect the first structure in the returned cell array of structures.

msgStructs = readMessages(bSel,'DataFormat','struct');
msgStructs{1}

ans = struct with fields:
 MessageType: 'turtlesim/Pose'
 X: 5.5016
 Y: 6.3965
 Theta: 4.5377
 LinearVelocity: 1
 AngularVelocity: 0

Extract the xy points from the messages and plot the robot trajectory.

Use cellfun to extract all the X and Y fields from the structure. These fields represent the xy
positions of the robot during the rosbag recording.

xPoints = cellfun(@(m) double(m.X),msgStructs);
yPoints = cellfun(@(m) double(m.Y),msgStructs);
plot(xPoints,yPoints)

1 Functions

1-86

Create rosbag Selection Using rosbagreader Object

Load a rosbag log file and parse out specific messages based on the selected criteria.

Create a rosbagreader object of all the messages in the rosbag log file.

bagMsgs = rosbagreader("ros_multi_topics.bag")

bagMsgs =
 rosbagreader with properties:

 FilePath: 'B:\matlab\toolbox\robotics\robotexamples\ros\data\bags\ros_multi_topics.bag'
 StartTime: 201.3400
 EndTime: 321.3400
 NumMessages: 36963
 AvailableTopics: [4x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [36963x4 table]

Select a subset of the messages based on their timestamp and topic.

bagMsgs2 = select(bagMsgs,...
 Time=[bagMsgs.StartTime bagMsgs.StartTime + 1],...
 Topic='/odom')

 readMessages

1-87

bagMsgs2 =
 rosbagreader with properties:

 FilePath: 'B:\matlab\toolbox\robotics\robotexamples\ros\data\bags\ros_multi_topics.bag'
 StartTime: 201.3400
 EndTime: 202.3200
 NumMessages: 99
 AvailableTopics: [1x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [99x4 table]

Retrieve the messages in the selection as a cell array.

msgs = readMessages(bagMsgs2)

msgs=99×1 cell array
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 ⋮

Return certain message properties as a time series.

ts = timeseries(bagMsgs2,...
 'Pose.Pose.Position.X', ...
 'Twist.Twist.Angular.Y')

 timeseries

 Timeseries contains duplicate times.

 Common Properties:
 Name: '/odom Properties'
 Time: [99x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [99x2 double]
 DataInfo: tsdata.datametadata

Input Arguments
bag — Index of messages in rosbag
BagSelection object | rosbagreader object

1 Functions

1-88

Index of the messages in the rosbag, specified as a BagSelection or rosbagreader object.

rows — Rows of BagSelection or rosbagreader object
n-element vector

Rows of the BagSelection or rosbagreader object, specified as an n-element vector, where n is
the number of rows to retrieve messages from. Each entry in the vector corresponds to a numbered
message in the bag. The range of the rows is [1, bag.NumMessage].

Output Arguments
msgs — ROS message data
object | cell array of message objects | cell array of structures

ROS message data, returned as an object, cell array of message objects, or cell array of structures.
Data comes from either the BagSelection object created using rosbag or the rosbagreader
object.

You must specify "DataFormat","struct" in the function to get messages as a cell array of
structures. Using structures can be significantly faster than using message objects, and custom
message data can be read directly without loading message definitions using rosgenmsg.

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

 readMessages

1-89

See Also
select | rosbag | timeseries | rosbagreader

1 Functions

1-90

readOccupancyGrid
Read occupancy grid message

Syntax
map = readOccupancyGrid(msg)

Description
map = readOccupancyGrid(msg) returns an occupancyMap object by reading the data inside a
ROS message, msg, which must be a 'nav_msgs/OccupancyGrid' message. All message data
values are converted to probabilities from 0 to 1. The unknown values (-1) in the message are set as
0.5 in the map.

Input Arguments
msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as an OccupancyGrid ROS message object
handle.

Output Arguments
map — Occupancy map
occupancyMap object handle

Occupancy map, returned as an occupancyMap object handle.

Version History
Introduced in R2016b

See Also
Functions
rosReadBinaryOccupancyGrid | rosReadOccupancyMap3D | rosWriteBinaryOccupancyGrid
| rosWriteOccupancyGrid

 readOccupancyGrid

1-91

readOccupancyMap3D
Read 3-D map from Octomap ROS message

Syntax
map = readOccupancyMap3D(msg)

Description
map = readOccupancyMap3D(msg) reads the data inside a ROS 'octomap_msgs/Octomap'
message to return an occupancyMap3D object. All message data values are converted to
probabilities from 0 to 1.

Input Arguments
msg — Octomap ROS message
structure

Octomap ROS message, specified as a structure of message type 'octomap_msgs/Octomap'. Get
this message by subscribing to an 'octomap_msgs/Octomap' topic using rossubscriber on a live
ROS network or by creating your own message using rosmessage.

Output Arguments
map — 3-D occupancy map
occupancyMap3D object handle

3-D occupancy map, returned as an occupancyMap3D object handle.

Version History
Introduced in R2021a

See Also
occupancyMap3D | rosmessage | rossubscriber

1 Functions

1-92

readRGB
Extract RGB values from point cloud data

Syntax
rgb = readRGB(pcloud)

Description
rgb = readRGB(pcloud) extracts the [r g b] values from all points in the PointCloud2 object,
pcloud, and returns them as an n-by-3 matrix of n 3-D point coordinates. If the point cloud does not
contain the RGB field, this function displays an error. To preserve the structure of the point cloud
data, see “Preserving Point Cloud Structure” on page 1-94.

Note readRGB will be removed. Use rosReadRGB instead. For more information, see “ROS Message
Structure Functions” on page 1-94

Examples

Read RGB Values from ROS Point Cloud Message

Load sample ROS messages including a ROS point cloud message, ptcloud.

exampleHelperROSLoadMessages

Read the RGB values from the point cloud.

rgb = readRGB(ptcloud);

Input Arguments
pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/PointCloud2' ROS
message.

Output Arguments
rgb — List of RGB values from point cloud
matrix

List of RGB values from point cloud, returned as a matrix. By default, this is an n-by-3 matrix. If the
point cloud object being read has the PreserveStructureOnRead property set to true, the points
are returned as an h-by-w-by-3 matrix. For more information, see “Preserving Point Cloud Structure”
on page 1-94.

 readRGB

1-93

Preserving Point Cloud Structure
Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image styles usually
come from depth sensors or stereo cameras. The input PointCloud2 object contains a
PreserveStructureOnRead property that is either true or false (default). Suppose that you set
the property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the organizational
structure of the point cloud. When you preserve the structure, the output matrices are of size m-by-n-
by-d, where m is the height, n is the width, and d is the number of return values for each point.
Otherwise, all points are returned as an x-by-d list. This structure can be preserved only if the point
cloud is organized.

Version History
Introduced in R2019b

ROS Message Structure Functions
Not recommended starting in R2021a

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To support message structures as inputs, new functions that operate on specialized ROS messages
have been provided. These new functions are based on the existing object functions of message
objects, but support ROS and ROS 2 message structures as inputs instead of message objects.

The object functions will be removed in a future release.

Message Types Object Function Name New Function Name
Image

CompressedImage

readImage

writeImage

rosReadImage

rosWriteImage
LaserScan readCartesian

readScanAngles

lidarScan

plot

rosReadCartesian

rosReadScanAngles

rosReadLidarScan

rosPlot

1 Functions

1-94

Message Types Object Function Name New Function Name
PointCloud2 apply

readXYZ

readRGB

readAllFieldNames

readField

scatter3

rosApplyTransform

rosReadXYZ

rosReadRGB

rosReadAllFieldNames

rosReadField

rosPlot
Quaternion readQuaternion rosReadQuaternion
OccupancyGrid readBinaryOccupanyGrid

readOccupancyGrid

writeBinaryOccupanyGrid

writeOccupanyGrid

rosReadOccupancyGrid

rosReadBinaryOccupancyGr
id

rosReadOccupancyGrid

rosWriteBinaryOccupancyG
rid

rosWriteOccupancyGrid
Octomap readOccupancyMap3D rosReadOccupancyMap3D
PointStamped

PoseStamped

QuaternionStamped

Vector3Stamped

TransformStamped

apply rosApplyTransform

All messages showdetails rosShowDetails

See Also
PointCloud2 | readXYZ | PointCloud2

 readRGB

1-95

readScanAngles
Return scan angles for laser scan range readings

Syntax
angles = readScanAngles(scan)

Description
angles = readScanAngles(scan) calculates the scan angles, angles, corresponding to the
range readings in the laser scan message, scan. Angles are measured counterclockwise around the
positive z-axis, with the zero angle along the x-axis. The angles is returned in radians and wrapped
to the [–pi, pi] interval.

Note readScanAngles will be removed. Use rosReadScanAngles instead. For more information,
see “ROS Message Structure Functions” on page 1-97

Examples

Read Scan Angles from ROS Laser Scan Message

Load sample ROS messages including a ROS laser scan message, scan.

exampleHelperROSLoadMessages

Read the scan angles from the laser scan.

angles = readScanAngles(scan)

angles = 640×1

 -0.5467
 -0.5450
 -0.5433
 -0.5416
 -0.5399
 -0.5382
 -0.5364
 -0.5347
 -0.5330
 -0.5313
 ⋮

Input Arguments
scan — Laser scan message
LaserScan object handle

1 Functions

1-96

'sensor_msgs/LaserScan' ROS message, specified as a LaserScan object handle.

Output Arguments
angles — Scan angles for laser scan data
n–by–1 matrix in radians

Scan angles for laser scan data, returned as an n-by-1 matrix in radians. Angles are measured
counter-clockwise around the positive z-axis, with the zero angle along the x-axis. The angles is
returned in radians and wrapped to the [–pi, pi] interval.

Version History
Introduced in R2019b

ROS Message Structure Functions
Not recommended starting in R2021a

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To support message structures as inputs, new functions that operate on specialized ROS messages
have been provided. These new functions are based on the existing object functions of message
objects, but support ROS and ROS 2 message structures as inputs instead of message objects.

The object functions will be removed in a future release.

Message Types Object Function Name New Function Name
Image

CompressedImage

readImage

writeImage

rosReadImage

rosWriteImage
LaserScan readCartesian

readScanAngles

lidarScan

plot

rosReadCartesian

rosReadScanAngles

rosReadLidarScan

rosPlot
PointCloud2 apply

readXYZ

readRGB

readAllFieldNames

readField

scatter3

rosApplyTransform

rosReadXYZ

rosReadRGB

rosReadAllFieldNames

rosReadField

rosPlot

 readScanAngles

1-97

Message Types Object Function Name New Function Name
Quaternion readQuaternion rosReadQuaternion
OccupancyGrid readBinaryOccupanyGrid

readOccupancyGrid

writeBinaryOccupanyGrid

writeOccupanyGrid

rosReadOccupancyGrid

rosReadBinaryOccupancyGr
id

rosReadOccupancyGrid

rosWriteBinaryOccupancyG
rid

rosWriteOccupancyGrid
Octomap readOccupancyMap3D rosReadOccupancyMap3D
PointStamped

PoseStamped

QuaternionStamped

Vector3Stamped

TransformStamped

apply rosApplyTransform

All messages showdetails rosShowDetails

See Also
rosReadCartesian | rosReadXYZ | rosPlot

1 Functions

1-98

readXYZ
Extract XYZ coordinates from point cloud data

Syntax
xyz = readXYZ(pcloud)

Description
xyz = readXYZ(pcloud) extracts the [x y z] coordinates from all points in the PointCloud2
object, pcloud, and returns them as an n-by-3 matrix of n 3-D point coordinates. If the point cloud
does not contain the x, y, and z fields, this function returns an error. Points that contain NaN are
preserved in the output. To preserve the structure of the point cloud data, see “Preserving Point
Cloud Structure” on page 1-100.

Note readXYZ will be removed. Use rosReadXYZ instead. For more information, see “ROS Message
Structure Functions” on page 1-100

Examples

Read XYZ Values from ROS Point Cloud Message

Load sample ROS messages including a ROS point cloud message, ptcloud.

exampleHelperROSLoadMessages

Read the XYZ values from the point cloud.

xyz = readXYZ(ptcloud);

Input Arguments
pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/PointCloud2' ROS
message.

Output Arguments
xyz — List of XYZ values from point cloud
matrix

List of XYZ values from point cloud, returned as a matrix. By default, this is a n-by-3 matrix. If the
point cloud object being read has the PreserveStructureOnRead property set to true, the points

 readXYZ

1-99

are returned as an h-by-w-by-3 matrix. For more information, see “Preserving Point Cloud Structure”
on page 1-100.

Preserving Point Cloud Structure
Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image styles usually
come from depth sensors or stereo cameras. The input PointCloud2 object contains a
PreserveStructureOnRead property that is either true or false (default). Suppose you set the
property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the organizational
structure of the point cloud. When you preserve the structure, the output matrices are of size m-by-n-
by-d, where m is the height, n is the width, and d is the number of return values for each point.
Otherwise, all points are returned as a x-by-d list. This structure can be preserved only if the point
cloud is organized.

Version History
Introduced in R2019b

ROS Message Structure Functions
Not recommended starting in R2021a

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To support message structures as inputs, new functions that operate on specialized ROS messages
have been provided. These new functions are based on the existing object functions of message
objects, but support ROS and ROS 2 message structures as inputs instead of message objects.

The object functions will be removed in a future release.

Message Types Object Function Name New Function Name
Image

CompressedImage

readImage

writeImage

rosReadImage

rosWriteImage
LaserScan readCartesian

readScanAngles

lidarScan

plot

rosReadCartesian

rosReadScanAngles

rosReadLidarScan

rosPlot

1 Functions

1-100

Message Types Object Function Name New Function Name
PointCloud2 apply

readXYZ

readRGB

readAllFieldNames

readField

scatter3

rosApplyTransform

rosReadXYZ

rosReadRGB

rosReadAllFieldNames

rosReadField

rosPlot
Quaternion readQuaternion rosReadQuaternion
OccupancyGrid readBinaryOccupanyGrid

readOccupancyGrid

writeBinaryOccupanyGrid

writeOccupanyGrid

rosReadOccupancyGrid

rosReadBinaryOccupancyGr
id

rosReadOccupancyGrid

rosWriteBinaryOccupancyG
rid

rosWriteOccupancyGrid
Octomap readOccupancyMap3D rosReadOccupancyMap3D
PointStamped

PoseStamped

QuaternionStamped

Vector3Stamped

TransformStamped

apply rosApplyTransform

All messages showdetails rosShowDetails

See Also
rosReadRGB | rosReadCartesian | rosReadAllFieldNames

 readXYZ

1-101

receive
Wait for new ROS message

Syntax
msg = receive(sub)
msg = receive(sub,timeout)
[msg,status,statustext] = receive(___)

Description
msg = receive(sub) waits for MATLAB to receive a topic message from the specified subscriber,
sub, and returns it as msg.

msg = receive(sub,timeout) specifies in timeout the number of seconds to wait for a message.
If a message is not received within the timeout limit, this function will display an error.

[msg,status,statustext] = receive(___) returns a status indicating whether a message
has been received successfully, and a statustext that captures additional information about the
status, using any of the arguments from the previous syntaxes. If an error condition occurs, such as
no message received within the specified timeout, the status will be false, and this function will
not display an error.

Examples

Create A Subscriber and Get Data From ROS

Connect to a ROS network. Set up a sample ROS network. The '/scan' topic is being published on
the network.

rosinit

Launching ROS Core...
...Done in 3.3025 seconds.
Initializing ROS master on http://172.30.131.134:60240.
Initializing global node /matlab_global_node_99766 with NodeURI http://bat6234win64:55949/ and MasterURI http://localhost:60240.

exampleHelperROSCreateSampleNetwork

Create a subscriber for the '/scan' topic using message structures. Wait for the subscriber to
register with the master.

sub = rossubscriber('/scan','DataFormat','struct');
pause(1);

Receive data from the subscriber as a ROS message structure. Specify a 10-second timeout.

[msg2,status,statustext] = receive(sub,10)

msg2 = struct with fields:
 MessageType: 'sensor_msgs/LaserScan'

1 Functions

1-102

 Header: [1x1 struct]
 AngleMin: -0.5467
 AngleMax: 0.5467
 AngleIncrement: 0.0017
 TimeIncrement: 0
 ScanTime: 0.0330
 RangeMin: 0.4500
 RangeMax: 10
 Ranges: [640x1 single]
 Intensities: []

status = logical
 1

statustext =
'success'

Shutdown the timers used by sample network.

exampleHelperROSShutDownSampleNetwork

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_99766 with NodeURI http://bat6234win64:55949/ and MasterURI http://localhost:60240.
Shutting down ROS master on http://172.30.131.134:60240.

Input Arguments
sub — ROS subscriber
Subscriber object handle

ROS subscriber, specified as a Subscriber object handle. You can create the subscriber using
rossubscriber.

timeout — Timeout for receiving a message
scalar in seconds

Timeout for receiving a message, specified as a scalar in seconds.

Output Arguments
msg — ROS message
Message object handle | structure

ROS message, returned as a Message object handle or structure.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 1-104.

 receive

1-103

status — Status of the message reception
logical scalar

Status of the message reception, returned as a logical scalar. If no message is received, status will
be false.

Note Use the status output argument when you use receive in the entry-point function for code
generation. This will avoid runtime errors and outputs the status instead, which can be reacted to in
the calling code.

statustext — Status text associated with the message reception status
character vector

Status text associated with the message reception, returned as one of the following:

• 'success' — The message was successfully received.
• 'timeout' — The message was not received within the specified timeout.
• 'unknown' — The message was not received due to unknown errors.

Tips
For code generation:

• Use the status output argument when you call receive in the entry-point function. This will
avoid runtime errors and instead, outputs the status of message reception, which can be reacted
to in the calling code.

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

1 Functions

1-104

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for struct messages.
• To monitor the message reception status and react in the calling code, use the status output

argument. This will avoid runtime errors when no message is received.

See Also
send | rosmessage | rostopic | rossubscriber | rospublisher

Topics
“Exchange Data with ROS Publishers and Subscribers”

 receive

1-105

ros2
Retrieve information about ROS 2 network

Syntax
ros2 msg list
ros2 msg show msgType
ros2 node list
ros2 topic list
ros2 service list
ros2 service type svcname
ros2 bag info folderpath
msgList = ros2("msg","list")
msgInfo = ros2("msg","show",msgType)
nodeList = ros2("node","list")
topicList = ros2("topic","list")
serviceList = ros2("service","list")
serviceTypes = ros2("service","type",svcname)
nodeList = ros2("node","list","DomainID",ID)
topicList = ros2("topic","list","DomainID",ID)
bag2info = ros2("bag","info",folderpath)

Description
ros2 msg list returns a list of all available ROS 2 message types that can be used in MATLAB.

ros2 msg show msgType provides the definition of the ROS 2 message, msgType.

ros2 node list lists nodes on the ROS 2 network.

ros2 topic list lists topic names with registered publishers or subscribers on the ROS 2
network.

ros2 service list lists service names that are registered on the ROS 2 network through either
servers or clients.

ros2 service type svcname lists service types that are registered on the ROS 2 network for the
provided svcname.

ros2 bag info folderpath displays the information about the contents of the ros2bag at
folderpath in the MATLAB Command Window. The information include the contents of the
bag2info structure.

Note If the ROS 2 bag log file contains custom messages, generate MATLAB interfaces to ROS 2
custom messages using ros2genmsg function before using this command.

msgList = ros2("msg","list") returns a list of all available ROS 2 message types that can be
used in MATLAB.

1 Functions

1-106

msgInfo = ros2("msg","show",msgType) provides the definition of the ROS 2 message,
msgType.

nodeList = ros2("node","list") lists nodes on the ROS 2 network.

topicList = ros2("topic","list") lists topic names with registered publishers or subscribers
on the ROS 2 network.

serviceList = ros2("service","list") lists service names that are registered on the ROS 2
network through either servers or clients.

serviceTypes = ros2("service","type",svcname) lists service types that are registered on
the ROS 2 network for the provided svcname.

nodeList = ros2("node","list","DomainID",ID) lists nodes on the ROS 2 network for the
specified network domain ID. By default, the value of "DomainID" is 0 unless otherwise specified by
the ROS_DOMAIN_ID environment variable.

topicList = ros2("topic","list","DomainID",ID) lists topic names with registered
publishers or subscribers on the ROS 2 network for the specified network domain ID.

Note The "DomainID" name-value pair applies only to information gathered from the active
network, such as the node and topic list, and not to static ROS 2 data such as message information.

The first time ros2 is called for a specific domain ID not all information on the network may be
immediately available. If incomplete network information is returned from ros2, wait for a short time
before trying again.

bag2info = ros2("bag","info",folderpath) returns information about the contents of the
ros2bag as a structure, bag2info at folderpath.

Note If the ROS 2 bag log file contains custom messages, generate MATLAB interfaces to ROS 2
custom messages using ros2genmsg function before using this function.

Examples

Get Definition of ROS 2 Message

Show the definition of the geometry_msgs/Accel message.

ros2 msg show geometry_msgs/Accel

This expresses acceleration in free space broken into its linear and angular parts.
Vector3 linear
Vector3 angular

Get Definition of ROS 2 Message

Show the definition of the geometry_msgs/Accel message.

 ros2

1-107

ros2 msg show geometry_msgs/Accel

This expresses acceleration in free space broken into its linear and angular parts.
Vector3 linear
Vector3 angular

Get List of ROS 2 Nodes

Create sample node, myNode, on the ROS 2 network.

node = ros2node("myNode");

Lists the nodes on the network.

ros2 node list

/myNode

Remove myNode from the network.

delete(node)

Get List of ROS 2 Topics

List the available ROS 2 topics.

ros2 topic list

/parameter_events
/rosout

Input Arguments
msgType — Message type
string scalar | character vector

Message type, specified as a string scalar or character vector. The string is case-sensitive and no
partial matches are allowed. It must match a message on the list given by calling
ros2("msg","list").

Function syntax:
Example: ros2("msg","show","sensor_msgs/LaserScan")

Command syntax:
Example: ros2 msg show sensor_msgs/LaserScan
Data Types: char | string

svcname — Service name
string scalar | character vector

1 Functions

1-108

Service name, specified as a string or character vector. The string is case-sensitive and no partial
matches are allowed. It must match a service on the list given by calling
ros2("service","list").

Function syntax:
Example: ros2("service","type","/example_service")

Command syntax:
Example: ros2 service type /example_service
Data Types: char | string

folderpath — Path to ros2bag files
string scalar | character vector

Path to the ros2bag files, specified as a string scalar or character vector.

Note folderpath location must contain ROS 2 bag file (.db3) and metadata.yaml, which holds
the meta information about the bag file. The folder name must be same as the ROS 2 bag file name.

Function syntax:
Example: ros2("bag","info","C:\Users\Jack\MATLAB\EM\alltopics")

Command syntax:
Example: ros2 bag info C:\Users\Jack\MATLAB\EM\alltopics
Data Types: char | string

ID — Domain identification of the network
non-negative scalar integer between 0 and 232

The domain identification of the ROS 2 network, specified as a non-negative scalar integer between 0
and 232.
Example: 2
Data Types: double

Output Arguments
msgList — List of all message types available in MATLAB
cell array of character vectors

List of all message types available in MATLAB, returned as a cell array of character vectors.

msgInfo — Details of message definition
character vector

Details of the information inside the ROS message definition, returned as a character vector.

topicList — List of topics on the ROS 2 network
cell array of character vectors

 ros2

1-109

List of topics on the ROS 2 network, returned as a cell array of character vectors.

serviceList — List of services on the ROS 2 network
cell array of character vectors

List of services on the ROS 2 network, returned as a cell array of character vectors.

nodeList — List of node names available
cell array of character vectors

List of node names available, returned as a cell array of character vectors.

bag2info — Information about contents of ros2bag
structure

Information about contents of the ros2bag, returned as a structure. This structure contains fields
related to the ros2bag log file and its contents. A sample output for a ros2bag as a structure is:

 Path: 'C:\Users\Jack\MATLAB\EM\alltopics\alltopics.db3'
 Version: '1'
 StorageId: 'sqlite3'
 Duration: 102.396644003
 Start: [1×1 struct]
 End: [1×1 struct]
 Size: 4965433
 Messages: 36503
 Types: [5×1 struct]
 Topics: [5×1 struct]

Data Types: struct

Version History
Introduced in R2019b

See Also
ros2node | ros2publisher | ros2subscriber | ros2message

1 Functions

1-110

ros2genmsg
Generate custom messages from ROS 2 definitions

Syntax
ros2genmsg(folderpath)
ros2genmsg(folderpath,Name=Value)

Description
ros2genmsg(folderpath) generates ROS 2 custom messages by reading ROS 2 custom messages
and service definitions in the specified folder path. The function folder must contain one or more ROS
2 package. These packages contain the message definitions in .msg files and the service definitions
in .srv files.

After you generate the custom messages, you can send and receive them in MATLAB like all the other
supported messages. You can create these messages using ros2message or view the list of messages
by entering ros2 msg list at the MATLAB Command Window.

Note

• To generate custom messages for ROS 2, you must build the ROS 2 packages. This process
requires you to have a C++ compiler for your platform. For more information, see “ROS Toolbox
System Requirements”.

• With every new release of MATLAB, you must regenerate the custom messages from the ROS 2
definitions.

• Custom messages that you generate in MATLAB now support eProsima Fast DDS and Eclipse
Cyclone DDS middleware. For more information on ROS middleware implementations, see
“Switching Between ROS Middleware Implementations”.

ros2genmsg(folderpath,Name=Value) specifies additional options using one or more name-value
arguments.

Examples

ROS 2 Custom Message Support

Custom messages are messages that you define. Use custom messages to extend the set of message
types currently supported in ROS 2. If you are sending and receiving supported message types, you
do not need to use custom messages. To see a list of supported message types, enter ros2 msg
list in the MATLAB® Command Window. For more information about supported ROS 2 messages,
see “Work with Basic ROS 2 Messages”.

If this if your first time working with ROS 2 custom messages, see “ROS Toolbox System
Requirements”.

 ros2genmsg

1-111

ROS 2 custom messages are specified in ROS 2 package folders that contain a folder named msg. The
msg folder contains all your custom message type definitions. For example, the example_b_msgs
package in the custom folder, has this folder and file structure.

The package contains the custom message type Standalone.msg. MATLAB uses these files to
generate the necessary files for using the custom messages contained in the package.

In this example, you create ROS 2 custom messages in MATLAB. You must have a ROS 2 package that
contains the required msg file.

After ensuring that your custom message package is correct, you specify the path to the parent folder
and call ros2genmsg with the specified path. The following example provided three messages
example_package_a, example_package_b, and example_package_c that have dependencies.
This example also illustrates that you can use a folder containing multiple messages and generate
them all at the same time.

Open a new MATLAB session and create a custom message folder in a local folder.

folderPath = fullfile(pwd,"custom");
copyfile("example_*_msgs",folderPath);

Specify the folder path for custom message files and use ros2genmsg to create custom messages.

ros2genmsg(folderPath)

Identifying message files in folder 'C:/Work/custom'.Done.
Removing previous version of Python virtual environment.Done.
Creating a Python virtual environment.Done.
Adding required Python packages to virtual environment.Done.
Copying include folders.Done.
Copying libraries.Done.
Validating message files in folder 'C:/Work/custom'.Done.
[3/3] Generating MATLAB interfaces for custom message packages... Done.
Running colcon build in folder 'C:/Work/custom/matlab_msg_gen/win64'.
Build in progress. This may take several minutes...
Build succeeded.build log

Call ros2 msg list to verify creation of new custom messages.

ros2 msg list

action_msgs/CancelGoalRequest
action_msgs/CancelGoalResponse
action_msgs/GoalInfo
action_msgs/GoalStatus
action_msgs/GoalStatusArray
actionlib_msgs/GoalID

1 Functions

1-112

actionlib_msgs/GoalStatus
actionlib_msgs/GoalStatusArray
builtin_interfaces/Duration
builtin_interfaces/Time
composition_interfaces/ListNodesRequest
composition_interfaces/ListNodesResponse
composition_interfaces/LoadNodeRequest
composition_interfaces/LoadNodeResponse
composition_interfaces/UnloadNodeRequest
composition_interfaces/UnloadNodeResponse
diagnostic_msgs/AddDiagnosticsRequest
diagnostic_msgs/AddDiagnosticsResponse
diagnostic_msgs/DiagnosticArray
diagnostic_msgs/DiagnosticStatus
diagnostic_msgs/KeyValue
diagnostic_msgs/SelfTestRequest
diagnostic_msgs/SelfTestResponse
example_a_msgs/DependsOnB
example_b_msgs/Standalone
example_c_msgs/DependsOnB
example_interfaces/AddTwoIntsRequest
example_interfaces/AddTwoIntsResponse
example_interfaces/Bool
example_interfaces/Byte
example_interfaces/ByteMultiArray
example_interfaces/Char
example_interfaces/Empty
example_interfaces/Float32
example_interfaces/Float32MultiArray
example_interfaces/Float64
example_interfaces/Float64MultiArray
example_interfaces/Int16
example_interfaces/Int16MultiArray
example_interfaces/Int32
example_interfaces/Int32MultiArray
example_interfaces/Int64
example_interfaces/Int64MultiArray
example_interfaces/Int8
example_interfaces/Int8MultiArray
example_interfaces/MultiArrayDimension
example_interfaces/MultiArrayLayout
example_interfaces/SetBoolRequest
example_interfaces/SetBoolResponse
example_interfaces/String
example_interfaces/TriggerRequest
example_interfaces/TriggerResponse
example_interfaces/UInt16
example_interfaces/UInt16MultiArray
example_interfaces/UInt32
example_interfaces/UInt32MultiArray
example_interfaces/UInt64
example_interfaces/UInt64MultiArray
example_interfaces/UInt8
example_interfaces/UInt8MultiArray
example_interfaces/WString
geometry_msgs/Accel
geometry_msgs/AccelStamped
geometry_msgs/AccelWithCovariance

 ros2genmsg

1-113

geometry_msgs/AccelWithCovarianceStamped
geometry_msgs/Inertia
geometry_msgs/InertiaStamped
geometry_msgs/Point
geometry_msgs/Point32
geometry_msgs/PointStamped
geometry_msgs/Polygon
geometry_msgs/PolygonStamped
geometry_msgs/Pose
geometry_msgs/Pose2D
geometry_msgs/PoseArray
geometry_msgs/PoseStamped
geometry_msgs/PoseWithCovariance
geometry_msgs/PoseWithCovarianceStamped
geometry_msgs/Quaternion
geometry_msgs/QuaternionStamped
geometry_msgs/Transform
geometry_msgs/TransformStamped
geometry_msgs/Twist
geometry_msgs/TwistStamped
geometry_msgs/TwistWithCovariance
geometry_msgs/TwistWithCovarianceStamped
geometry_msgs/Vector3
geometry_msgs/Vector3Stamped
geometry_msgs/Wrench
geometry_msgs/WrenchStamped
lifecycle_msgs/ChangeStateRequest
lifecycle_msgs/ChangeStateResponse
lifecycle_msgs/GetAvailableStatesRequest
lifecycle_msgs/GetAvailableStatesResponse
lifecycle_msgs/GetAvailableTransitionsRequest
lifecycle_msgs/GetAvailableTransitionsResponse
lifecycle_msgs/GetStateRequest
lifecycle_msgs/GetStateResponse
lifecycle_msgs/State
lifecycle_msgs/Transition
lifecycle_msgs/TransitionDescription
lifecycle_msgs/TransitionEvent
logging_demo/ConfigLoggerRequest
logging_demo/ConfigLoggerResponse
map_msgs/GetMapROIRequest
map_msgs/GetMapROIResponse
map_msgs/GetPointMapROIRequest
map_msgs/GetPointMapROIResponse
map_msgs/GetPointMapRequest
map_msgs/GetPointMapResponse
map_msgs/OccupancyGridUpdate
map_msgs/PointCloud2Update
map_msgs/ProjectedMap
map_msgs/ProjectedMapInfo
map_msgs/ProjectedMapsInfoRequest
map_msgs/ProjectedMapsInfoResponse
map_msgs/SaveMapRequest
map_msgs/SaveMapResponse
map_msgs/SetMapProjectionsRequest
map_msgs/SetMapProjectionsResponse
nav_msgs/GetMapRequest
nav_msgs/GetMapResponse

1 Functions

1-114

nav_msgs/GetPlanRequest
nav_msgs/GetPlanResponse
nav_msgs/GridCells
nav_msgs/MapMetaData
nav_msgs/OccupancyGrid
nav_msgs/Odometry
nav_msgs/Path
nav_msgs/SetMapRequest
nav_msgs/SetMapResponse
pendulum_msgs/JointCommand
pendulum_msgs/JointState
pendulum_msgs/RttestResults
rcl_interfaces/DescribeParametersRequest
rcl_interfaces/DescribeParametersResponse
rcl_interfaces/FloatingPointRange
rcl_interfaces/GetParameterTypesRequest
rcl_interfaces/GetParameterTypesResponse
rcl_interfaces/GetParametersRequest
rcl_interfaces/GetParametersResponse
rcl_interfaces/IntegerRange
rcl_interfaces/ListParametersRequest
rcl_interfaces/ListParametersResponse
rcl_interfaces/ListParametersResult
rcl_interfaces/Log
rcl_interfaces/Parameter
rcl_interfaces/ParameterDescriptor
rcl_interfaces/ParameterEvent
rcl_interfaces/ParameterEventDescriptors
rcl_interfaces/ParameterType
rcl_interfaces/ParameterValue
rcl_interfaces/SetParametersAtomicallyRequest
rcl_interfaces/SetParametersAtomicallyResponse
rcl_interfaces/SetParametersRequest
rcl_interfaces/SetParametersResponse
rcl_interfaces/SetParametersResult
rosgraph_msgs/Clock
sensor_msgs/BatteryState
sensor_msgs/CameraInfo
sensor_msgs/ChannelFloat32
sensor_msgs/CompressedImage
sensor_msgs/FluidPressure
sensor_msgs/Illuminance
sensor_msgs/Image
sensor_msgs/Imu
sensor_msgs/JointState
sensor_msgs/Joy
sensor_msgs/JoyFeedback
sensor_msgs/JoyFeedbackArray
sensor_msgs/LaserEcho
sensor_msgs/LaserScan
sensor_msgs/MagneticField
sensor_msgs/MultiDOFJointState
sensor_msgs/MultiEchoLaserScan
sensor_msgs/NavSatFix
sensor_msgs/NavSatStatus
sensor_msgs/PointCloud
sensor_msgs/PointCloud2
sensor_msgs/PointField

 ros2genmsg

1-115

sensor_msgs/Range
sensor_msgs/RegionOfInterest
sensor_msgs/RelativeHumidity
sensor_msgs/SetCameraInfoRequest
sensor_msgs/SetCameraInfoResponse
sensor_msgs/Temperature
sensor_msgs/TimeReference
shape_msgs/Mesh
shape_msgs/MeshTriangle
shape_msgs/Plane
shape_msgs/SolidPrimitive
simple_msgs/AddTwoIntsRequest
simple_msgs/AddTwoIntsResponse
simple_msgs/Num
statistics_msgs/MetricsMessage
statistics_msgs/StatisticDataPoint
statistics_msgs/StatisticDataType
std_msgs/Bool
std_msgs/Byte
std_msgs/ByteMultiArray
std_msgs/Char
std_msgs/ColorRGBA
std_msgs/Empty
std_msgs/Float32
std_msgs/Float32MultiArray
std_msgs/Float64
std_msgs/Float64MultiArray
std_msgs/Header
std_msgs/Int16
std_msgs/Int16MultiArray
std_msgs/Int32
std_msgs/Int32MultiArray
std_msgs/Int64
std_msgs/Int64MultiArray
std_msgs/Int8
std_msgs/Int8MultiArray
std_msgs/MultiArrayDimension
std_msgs/MultiArrayLayout
std_msgs/String
std_msgs/UInt16
std_msgs/UInt16MultiArray
std_msgs/UInt32
std_msgs/UInt32MultiArray
std_msgs/UInt64
std_msgs/UInt64MultiArray
std_msgs/UInt8
std_msgs/UInt8MultiArray
std_srvs/EmptyRequest
std_srvs/EmptyResponse
std_srvs/SetBoolRequest
std_srvs/SetBoolResponse
std_srvs/TriggerRequest
std_srvs/TriggerResponse
stereo_msgs/DisparityImage
test_msgs/Arrays
test_msgs/ArraysRequest
test_msgs/ArraysResponse
test_msgs/BasicTypes

1 Functions

1-116

test_msgs/BasicTypesRequest
test_msgs/BasicTypesResponse
test_msgs/BoundedSequences
test_msgs/Builtins
test_msgs/Constants
test_msgs/Defaults
test_msgs/Empty
test_msgs/EmptyRequest
test_msgs/EmptyResponse
test_msgs/MultiNested
test_msgs/Nested
test_msgs/Strings
test_msgs/UnboundedSequences
test_msgs/WStrings
trajectory_msgs/JointTrajectory
trajectory_msgs/JointTrajectoryPoint
trajectory_msgs/MultiDOFJointTrajectory
trajectory_msgs/MultiDOFJointTrajectoryPoint
unique_identifier_msgs/UUID
visualization_msgs/GetInteractiveMarkersRequest
visualization_msgs/GetInteractiveMarkersResponse
visualization_msgs/ImageMarker
visualization_msgs/InteractiveMarker
visualization_msgs/InteractiveMarkerControl
visualization_msgs/InteractiveMarkerFeedback
visualization_msgs/InteractiveMarkerInit
visualization_msgs/InteractiveMarkerPose
visualization_msgs/InteractiveMarkerUpdate
visualization_msgs/Marker
visualization_msgs/MarkerArray
visualization_msgs/MenuEntry

You can now use the above created custom message as the standard messages. For more information
on sending and receiving messages, see “Exchange Data with ROS 2 Publishers and Subscribers”.

Create a publisher to use example_b_msgs/Standalone message.

node = ros2node("/node_1");
pub = ros2publisher(node,"/example_topic","example_b_msgs/Standalone");

Create a subscriber on the same topic.

sub = ros2subscriber(node,"/example_topic");

Create a message and send the message.

custom_msg = ros2message("example_b_msgs/Standalone");
custom_msg.int_property = uint32(12);
custom_msg.string_property='This is ROS 2 custom message example';
send(pub,custom_msg);
pause(3) % Allow a few seconds for the message to arrive

Use LatestMessage field to know the recent message received by the subscriber.

sub.LatestMessage

ans = struct with fields:
 MessageType: 'example_b_msgs/Standalone'
 int_property: 12

 ros2genmsg

1-117

 string_property: 'This is ROS 2 custom message example'

Remove the created ROS objects.

clear node pub sub

Replacing Definitions of Built-In Messages with Custom Definitions

MATLAB provides a lot of built-in ROS 2 message types. You can replace the definitions of those
message types with new definitions using the same custom message creation workflow detailed
above. When you are replacing the definitions of a built-in message package, you must ensure that
the custom message package folder contains new definitions (.msg files) for all the message types in
the corresponding built-in message package.

Create Shareable ROS 2 Custom Message Package

In this example, you create a shareable ROS 2 custom message package in MATLAB. You must have a
ROS 2 package that contains the required msg file. This figure shows an example of an appropriate
folder structure.

After you prepare your custom message package folder, you specify the path to the parent folder and
call ros2genmsg with the specified path.

Open a new MATLAB session and create a custom message package folder in a local folder. Choose a
short folder path when you generate custom messages on a Windows machine to avoid limitations on
the number of characters in the folder path. For example,

genDir = fullfile('C:/test/ros2CustomMessages')

genDir = fullfile(pwd,'ros2CustomMessages');
packagePath = fullfile(genDir,'simple_msgs');
mkdir(packagePath)

Create a folder named msg inside the custom message package folder.

mkdir(packagePath,'msg')

Create a file named .msg inside the msg folder.

messageDefinition = {'int64 num'};

fileID = fopen(fullfile(packagePath,'msg', ...
 'Num.msg'),'w');
fprintf(fileID,'%s\n',messageDefinition{:});
fclose(fileID);

Create a folder named srv inside the custom message package folder.

1 Functions

1-118

mkdir(packagePath,'srv')

Create a file named .srv inside the srv folder.

serviceDefinition = {'int64 a'
 'int64 b'
 '---'
 'int64 sum'};

fileID = fopen(fullfile(packagePath,'srv', ...
 'AddTwoInts.srv'),'w');
fprintf(fileID,'%s\n',serviceDefinition{:});
fclose(fileID);

Generate custom messages from ROS 2 definitions in .msg and .srv files. Use the
CreateShareableFile name-value argument to create a shareable ZIP archive of the generated
custom messages.

For information about how to use use this ZIP archive to register the custom messages in another
machine, see ros2RegisterMessages.

ros2genmsg(genDir,CreateShareableFile=true);

Identifying message files in folder 'C:/test/ros2CustomMessages'.Done.
Creating a Python virtual environment.Done.
Adding required Python packages to virtual environment.Done.
Copying include folders.Done.
Copying libraries.Done.
Validating message files in folder 'C:/test/ros2CustomMessages'.Done.
[1/1] Generating MATLAB interfaces for custom message packages... Done.
Running colcon build in folder 'C:/test/ros2CustomMessages/matlab_msg_gen/win64'.
Build in progress. This may take several minutes...
Build succeeded.build log
Generating zip file in the folder 'C:/test/ros2CustomMessages'.Done.

Verify creation of the new custom messages by entering ros2 msg list in the Command Window.

Input Arguments
folderpath — Path to ROS interfaces folder
string scalar | character vector

 ros2genmsg

1-119

Path to the ROS interfaces folder, which is the parent folder of ROS message packages, specified as a
string scalar or character vector. The parent folder must contain a package .xml and package
folders. These folders contain a folder named /msg with .msg files for message definitions and a
folder named /srv with .srv files for service definitions. For more information, see About ROS 2
Interfaces.
Example: 'C:/test/ros2CustomMessages'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BuildConfiguration='fasterruns'

BuildConfiguration — Allows for selecting different compiler optimizations when building
the message libraries
'fasterbuilds' (default) | 'fasterruns'

Build configuration, specified as the comma-separated pair consisting of BuildConfiguration and
a character vector or string scalar containing 'fasterbuilds' or 'fasterruns'.

• 'fasterbuilds' — Build the message libraries with compiler optimizations for shorter build
times.

• 'fasterruns' — Build the message libraries with compiler optimizations for faster execution.

Example: ros2genmsg('C:/test/
ros2CustomMessages',BuildConfiguration='fasterruns')

Data Types: char | string

CreateShareableFile — Option to generate shareable ZIP archive
false or 0 (default) | true or 1

Option to create a sharable ZIP archive, specified as a numeric or logical 1 (true) or 0 (false).

When you specify this argument as 1 (true), the function creates a ZIP archive be compressing the
install folder in the matlab_msg_gen folder. You can use this file with another machine running on
the same platform and using the same MATLAB version.

When you specify this argument as 0 (false), the function does not create a ZIP archive.
Example: ros2genmsg('C:/test/ros2CustomMessages',CreateShareableFile=true)
Data Types: logical

Limitations
Restart Nodes

• After you generate custom messages, restart any existing ROS 2 nodes.

1 Functions

1-120

https://index.ros.org/doc/ros2/Concepts/About-ROS-Interfaces/
https://index.ros.org/doc/ros2/Concepts/About-ROS-Interfaces/

Code Generation with custom messages:

• Custom message and service types can be used with ROS 2 functionality for generating C++ code
for a standalone ROS 2 node. The generated TGZ archive includes definitions for the custom
messages, but not the ROS 2 custom message packages. When the function builds the generated
code in the destination, the custom message packages must be available in the colcon workspace.
Set this workspace as your current working directory. Install or copy the custom message package
to your system before building the generated code.

MATLAB Compiler

• MATLAB Compiler™ software do not support ROS custom messages and the ros2genmsg
function.

Version History
Introduced in R2019b

Support for ROS Middleware Implementations

MATLAB generated custom messages now support eProsima Fast DDS and Eclipse Cyclone DDS
middleware. For more information on ROS middleware implementations see “Switching Between ROS
Middleware Implementations”.

See Also
ros2message | ros2

Topics
“ROS Custom Message Support” on page 1-144

External Websites
About ROS 2 Interfaces
Download Python

 ros2genmsg

1-121

https://index.ros.org/doc/ros2/Concepts/About-ROS-Interfaces/
https://www.python.org/downloads/

ros2message
Create ROS 2 message structures

Syntax
msg = ros2message(msgType)

Description
msg = ros2message(msgType) creates a structure compatible with ROS 2 messages of type
msgType.

Examples

Create a String Message

Create a ROS 2 string message.

strMsg = ros2message('std_msgs/String')

strMsg = struct with fields:
 MessageType: 'std_msgs/String'
 data: ''

Create an empty laser scan message

Create an empty ROS 2 laser scan message.

scanMsg = ros2message("sensor_msgs/LaserScan")

scanMsg = struct with fields:
 MessageType: 'sensor_msgs/LaserScan'
 header: [1x1 struct]
 angle_min: 0
 angle_max: 0
 angle_increment: 0
 time_increment: 0
 scan_time: 0
 range_min: 0
 range_max: 0
 ranges: 0
 intensities: 0

1 Functions

1-122

Input Arguments
msgType — Message type for a ROS 2 topic
character vector

Message type for a ROS 2 topic, specified as a character vector.

Output Arguments
msg — ROS 2 message for a given topic
object handle

ROS 2 message for a given topic, returned as an object handle.

Version History
Introduced in R2019b

Deprecation of Messages
Behavior changed in R2022a

The following messages in std_msgs is deprecated in ROS 2 Foxy Fitzroy.

Messages
std_msgs/msg/Bool
std_msgs/msg/Byte
std_msgs/msg/ByteMultiArray
std_msgs/msg/Char
std_msgs/msg/Float32
std_msgs/msg/Float32MultiArray
std_msgs/msg/Float64
std_msgs/msg/Float64MultiArray
std_msgs/msg/Int16
std_msgs/msg/Int16MultiArray
std_msgs/msg/Int32
std_msgs/msg/Int32MultiArray
std_msgs/msg/Int64
std_msgs/msg/Int64MultiArray
std_msgs/msg/Int8
std_msgs/msg/Int8MultiArray
std_msgs/msg/MultiArrayDimension
std_msgs/msg/MultiArrayLayout
std_msgs/msg/String
std_msgs/msg/UInt16

 ros2message

1-123

Messages
std_msgs/msg/UInt16MultiArray
std_msgs/msg/UInt32
std_msgs/msg/UInt32MultiArray
std_msgs/msg/UInt64
std_msgs/msg/UInt64MultiArray
std_msgs/msg/UInt8
std_msgs/msg/UInt8MultiArray

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

• For messages with fields containing cell array of strings, such as sensor_msgs/JointState,
accessing those fields in the MATLAB function is not supported.

See Also
ros2node | ros2publisher | ros2subscriber | ros2

1 Functions

1-124

ros2duration
Create a ROS 2 duration message

Syntax
dur = ros2duration
dur = ros2duration(totalSecs)
dur = ros2duration(secs,nsecs)

Description
dur = ros2duration returns a builtin_interfaces/Duration ROS 2 message structure, dur,
with seconds and nanoseconds set to 0.

dur = ros2duration(totalSecs) initializes the duration values for seconds and nanoseconds
based on the specified time, in seconds, totalSecs

dur = ros2duration(secs,nsecs) initializes the duration values for seconds and nanoseconds
individually. The function automatically wraps large values of nsecs, and adds the remainder to the
seconds value of the message, secs.

Examples

Work with ROS 2 Duration Messages

Create a ROS 2 duration message using seconds and nanoseconds.

dur1 = ros2duration(100,2000000)

dur1 = struct with fields:
 MessageType: 'builtin_interfaces/Duration'
 sec: 100
 nanosec: 2000000

Create a ROS 2 duration message using a floating-point value. This sets the seconds using the integer
portion and nanoseconds with the remainder.

dur2 = ros2duration(20.5)

dur2 = struct with fields:
 MessageType: 'builtin_interfaces/Duration'
 sec: 20
 nanosec: 500000000

Add a ROS 2 duration mesage to a ROS 2 time message.

node = ros2node("/test");
t1 = ros2time(node,"now");
t2 = ros2time(t1.sec+dur1.sec,t1.nanosec+dur1.nanosec)

 ros2duration

1-125

t2 = struct with fields:
 MessageType: 'builtin_interfaces/Time'
 sec: 1661952627
 nanosec: 140479800

Input Arguments
totalSecs — Total time
0 (default) | scalar

Total time, specified as a floating-point scalar. The integer portion sets the sec field, and the
remainder sets the nanosec field of the duration message dur.

secs — Whole seconds
0 (default) | integer

Whole seconds, specified as an integer. This value directly sets to the sec field of the duration
message dur.

Note The maximum and minimum values for secs are 2147483648 and 2147483647, respectively.

nsecs — Nanoseconds
0 (default) | positive integer

Nanoseconds, specified as a positive integer. This value directly sets the nanoSec field of the
duration message dur, unless it is greater than or equal to 109. If so, the function wraps the value
and adds the remainder to the value of secs.

Output Arguments
dur — ROS 2 duration
builtin_interfaces/Duration message structure

ROS 2 duration, returned as a builtin_interfaces/Duration message structure.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ros2time | ros2message

1 Functions

1-126

ros2time
Access ROS 2 time functionality

Syntax
time = ros2time
time = ros2time(totalSecs)
time = ros2time(secs,nsecs)

time = ros2time(node,"now")
[time,issimtime] = ros2time(node,"now")
time = ros2time(node,"now","system")

Description
time = ros2time returns a builtin_interfaces/Time ROS 2 message structure, time, with
seconds and nanoseconds set to 0.

time = ros2time(totalSecs) initializes the time values for seconds and nanoseconds based on
the specified time, in seconds, totalSecs.

time = ros2time(secs,nsecs) initializes the time values for seconds and nanoseconds
individually. The function automatically wraps large values of nsecs, and adds the remainder to the
seconds value of the message, secs.

time = ros2time(node,"now") returns the current ROS 2 time time within the specified
ros2node object node. If the use_sim_time ROS 2 parameter is set to true, then ros2time
returns the simulation time published on the clock topic. Otherwise, the function returns the system
time of your machine. If you do not specify an output argument, the function prints the current time
(in seconds) to the screen.

You can use ros2time to timestamp messages or to measure time in the ROS 2 network.

[time,issimtime] = ros2time(node,"now") also returns a logical scalar issimtime, that
indicates if time is in simulation time (true) or system time (false).

time = ros2time(node,"now","system") returns the system time of your machine, even if ROS
publishes simulation time on the clock topic. If you do not specify an output argument, the function
prints the system time (in seconds) to the screen.

System time in ROS follows the UNIX or POSIX time standard. POSIX time is defined as the time that
has elapsed since 00:00:00 Coordinated Universal Time (UTC), January 1 1970, not counting leap
seconds.

Examples

Get Current ROS 2 Time and Timestamp ROS 2 Message Data

Create a ROS 2 node.

 ros2time

1-127

node = ros2node("/my_node");

Get current ROS 2 time based on the source used by the ROS 2 node.

t = ros2time(node,"now")

t = struct with fields:
 MessageType: 'builtin_interfaces/Time'
 sec: 1661954053
 nanosec: 172535200

Create a stamped ROS 2 point message. Specify the header.stamp property with the current system
time.

point = ros2message("geometry_msgs/PointStamped");
point.header.stamp = t;
point.point.x = 5;

Convert ROS 2 Time to the specified MATLAB format, datetime.

time = datetime(t.sec + 10^-9*int32(t.nanosec),'ConvertFrom','posixtime')

time = datetime
 31-Aug-2022 13:54:13

Input Arguments
totalSecs — Total time
0 (default) | scalar

Total time, specified as a floating-point scalar. The integer portion sets the sec field, and the
remainder sets the nanosec field the time message time.

secs — Whole seconds
0 (default) | positive integer

Whole seconds, specified as a positive integer.

Note The maximum and minimum values for secs are 0 and 4294967294.

nsecs — Nanoseconds
0 (default) | positive integer

Nanoseconds, specified as a positive integer. If this value is greater than or equal to 109, then the
function wraps the value and adds the remainder to the value of secs.

node — ROS 2 node on network
ros2node object

ROS 2 node on the network, specified as a ros2node object.

1 Functions

1-128

Output Arguments
time — ROS 2 time
builtin_interfaces/Time message structure

ROS 2 time, returned as a builtin_interfaces/Time message structure.

issimtime — Indicator whether time is simulation time
logical scalar

Indicator whether time is simulation time, returned as a logical scalar.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ros2duration | ros2message

 ros2time

1-129

rosaction
Retrieve information about ROS actions

Syntax
rosaction list
rosaction info actionname
rosaction type actionname

actionlist = rosaction("list")
actioninfo = rosaction("info",actionname)
actiontype = rosaction("type",actionname)

Description
rosaction list returns a list of available ROS actions from the ROS network.

rosaction info actionname returns the action type, message types, action server, and action
clients for the specified action name.

rosaction type actionname returns the action type for the specified action name.

actionlist = rosaction("list") returns a list of available ROS actions from the ROS network.

actioninfo = rosaction("info",actionname) returns a structure containing the action type,
message types, action server, and action clients for the specified action name.

actiontype = rosaction("type",actionname) returns the action type for the specified action
name.

Examples

Get Information About ROS Actions

Get information about ROS actions that are available from the ROS network. You must be connected
to a ROS network using rosinit.

Action types must be set up beforehand with a ROS action server running on the network. You must
have the set up '/fibonacci' action type. To run this action server, use the following command on
the ROS system:

rosrun actionlib_tutorials fibonacci_server

Connect to a ROS network. You must be connected to a ROS network to gather information about
what actions are available. Replace ipaddress with your network address.

ipaddress = '192.168.17.129';
rosinit(ipaddress,11311)

Initializing global node /matlab_global_node_04165 with NodeURI http://192.168.17.1:60617/

1 Functions

1-130

List the actions available on the network. The only action set up on this network is the '/
fibonacci' action.

rosaction list

/fibonacci

Get information about a specific ROS action type. The action type, message types, action server, and
clients are displayed.

rosaction info /fibonacci

Action Type: actionlib_tutorials/Fibonacci

Goal Message Type: actionlib_tutorials/FibonacciGoal
Feedback Message Type: actionlib_tutorials/FibonacciFeedback
Result Message Type: actionlib_tutorials/FibonacciResult

Action Server:
* /fibonacci (http://192.168.17.129:34793/)

Action Clients: None

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_04165 with NodeURI http://192.168.17.1:60617/

Input Arguments
actionname — ROS action name
string scalar | character vector

ROS action name, specified as a string scalar or character vector. The action name must match one of
the topics that rosaction("list") outputs.

Output Arguments
actionlist — List of actions available
cell array of character vectors

List of actions available on the ROS network, returned as a cell array of character vectors.

actioninfo — Information about a ROS action
structure

Information about a ROS action, returned as a structure. actioninfo, which contains the following
fields:

• ActionType
• GoalMessageType
• FeedbackMessageType

 rosaction

1-131

• ResultMessageType
• ActionServer
• ActionClients

For more information about ROS actions, see “ROS Actions Overview”.

actiontype — Type of ROS action
character vector

Type of ROS action, returned as a character vector.

Version History
Introduced in R2019b

See Also
sendGoal | cancelGoal | waitForServer | rosmessage | rostopic

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

1 Functions

1-132

rosAddons
Install add-ons for ROS

Syntax
rosAddons

Description
rosAddons allows you to download and install add-ons for ROS Toolbox. Use this function to open
the Add-on Explorer to browse the available add-ons.

Examples

Install Add-ons for ROS Toolbox™

rosAddons

Version History
Introduced in R2019b

See Also
Topics
“ROS Custom Message Support”
“Get and Manage Add-Ons”
“Manage Add-Ons”

 rosAddons

1-133

rosApplyTransform
Transform message entities into target frame

Syntax
tfentity = rosApplyTransform(tfmsg,entity)

Description
tfentity = rosApplyTransform(tfmsg,entity) applies the transformation represented by the
'TransformStamped' ROS message to the input message object entity.

This function determines the message type of entity and apples the appropriate transformation
method to it.

Input Arguments
tfmsg — Transformation message
TransformStamped ROS message structure

Transformation message, specified as a TransformStamped ROS message handle. The tfmsg is a
ROS message of type: 'geometry_msgs/TransformStamped'.

entity — ROS message
message structure

ROS message, specified as a message structure.

Supported messages are:

• geometry_msgs/PointStamped
• sensor_msgs/PointCloud2
• geometry_msgs/PoseStamped
• geometry_msgs/QuaternionStamped
• geometry_msgs/Vector3Stamped

Output Arguments
tfentity — Transformed ROS message
message structure

Transformed ROS message, returned as a message structure.

Version History
Introduced in R2021a

1 Functions

1-134

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Usage in MATLAB Function block is not supported.

See Also
rostf | rosbag

 rosApplyTransform

1-135

rosbag
Open and parse rosbag log file

Syntax
bag = rosbag(filename)

bagInfo = rosbag('info',filename)
rosbag info filename

Description
bag = rosbag(filename) creates an indexable BagSelection object, bag, that contains all the
message indexes from the rosbag at path filename. To get a BagSelection object, use rosbag. To
access the data, call readMessages or timeseries to extract relevant data.

A rosbag, or bag, is a file format for storing ROS message data. They are used primarily to log
messages within the ROS network. You can use these bags for offline analysis, visualization, and
storage. See the ROS Wiki page for more information about rosbags.

bagInfo = rosbag('info',filename) returns information as a structure, bagInfo, which is
about the contents of the rosbag at filename.

rosbag info filename displays information in the MATLAB Command Window about the contents
of the rosbag at filename. The information includes the number of messages, start and end times,
topics, and message types.

Examples

Retrieve Information from rosbag

Retrieve information from the rosbag. Specify the full path to the rosbag if it is not already available
on the MATLAB® path.

bagselect = rosbag('ex_multiple_topics.bag');

Select a subset of the messages, filtered by time and topic.

bagselect2 = select(bagselect,'Time',...
 [bagselect.StartTime bagselect.StartTime + 1],'Topic','/odom');

Display rosbag Information from File

To view information about a rosbag log file, use rosbag info filename, where filename is a
rosbag (.bag) file.

rosbag info 'ex_multiple_topics.bag'

1 Functions

1-136

https://wiki.ros.org/rosbag
https://wiki.ros.org/rosbag

Path: C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\21\tp5760f945\ros-ex32890909\ex_multiple_topics.bag
Version: 2.0
Duration: 2:00s (120s)
Start: Dec 31 1969 19:03:21.34 (201.34)
End: Dec 31 1969 19:05:21.34 (321.34)
Size: 23.6 MB
Messages: 36963
Types: gazebo_msgs/LinkStates [48c080191eb15c41858319b4d8a609c2]
 nav_msgs/Odometry [cd5e73d190d741a2f92e81eda573aca7]
 rosgraph_msgs/Clock [a9c97c1d230cfc112e270351a944ee47]
 sensor_msgs/LaserScan [90c7ef2dc6895d81024acba2ac42f369]
Topics: /clock 12001 msgs : rosgraph_msgs/Clock
 /gazebo/link_states 11999 msgs : gazebo_msgs/LinkStates
 /odom 11998 msgs : nav_msgs/Odometry
 /scan 965 msgs : sensor_msgs/LaserScan

Get Transformations from rosbag File

Get transformations from rosbag (.bag) files by loading the rosbag and checking the available
frames. From these frames, use getTransform to query the transformation between two coordinate
frames.

Load the rosbag.

bag = rosbag('ros_turtlesim.bag');

Get a list of available frames.

frames = bag.AvailableFrames;

Get the latest transformation between two coordinate frames.

tf = getTransform(bag,'world',frames{1});

Check for a transformation available at a specific time and retrieve the transformation. Use
canTransform to check if the transformation is available. Specify the time using rostime.

tfTime = rostime(bag.StartTime + 1);
if (canTransform(bag,'world',frames{1},tfTime))
 tf2 = getTransform(bag,'world',frames{1},tfTime);
end

Read Messages from a rosbag as a Structure

Load the rosbag.

bag = rosbag('ros_turtlesim.bag');

Select a specific topic.

bSel = select(bag,'Topic','/turtle1/pose');

Read messages as a structure. Specify the DataFormat name-value pair when reading the messages.
Inspect the first structure in the returned cell array of structures.

msgStructs = readMessages(bSel,'DataFormat','struct');
msgStructs{1}

 rosbag

1-137

ans = struct with fields:
 MessageType: 'turtlesim/Pose'
 X: 5.5016
 Y: 6.3965
 Theta: 4.5377
 LinearVelocity: 1
 AngularVelocity: 0

Extract the xy points from the messages and plot the robot trajectory.

Use cellfun to extract all the X and Y fields from the structure. These fields represent the xy
positions of the robot during the rosbag recording.

xPoints = cellfun(@(m) double(m.X),msgStructs);
yPoints = cellfun(@(m) double(m.Y),msgStructs);
plot(xPoints,yPoints)

Input Arguments
filename — Name of rosbag file and path
string scalar | character vector

Name of file and path for the rosbag you want to access, specified as a string scalar or character
vector. This path can be relative or absolute.

1 Functions

1-138

Output Arguments
bag — Selection of rosbag messages
BagSelection object handle

Selection of rosbag messages, returned as a BagSelection object handle.

bagInfo — Information about contents of rosbag
structure

Information about the contents of the rosbag, returned as a structure. This structure contains fields
related to the rosbag file and its contents. A sample output for a rosbag as a structure is:

Path: \ros\data\ex_multiple_topics.bag
Version: 2.0
Duration: 2:00s (120s)
Start: Dec 31 1969 19:03:21.34 (201.34)
End: Dec 31 1969 19:05:21.34 (321.34)
Size: 23.6 MB
Messages: 36963
Types: gazebo_msgs/LinkStates [48c080191eb15c41858319b4d8a609c2]
 nav_msgs/Odometry [cd5e73d190d741a2f92e81eda573aca7]
 rosgraph_msgs/Clock [a9c97c1d230cfc112e270351a944ee47]
 sensor_msgs/LaserScan [90c7ef2dc6895d81024acba2ac42f369]
Topics: /clock 12001 msgs : rosgraph_msgs/Clock
 /gazebo/link_states 11999 msgs : gazebo_msgs/LinkStates
 /odom 11998 msgs : nav_msgs/Odometry
 /scan 965 msgs : sensor_msgs/LaserScan

Version History
Introduced in R2019b

See Also
select | readMessages | canTransform | getTransform | timeseries | BagSelection

 rosbag

1-139

rosduration
Create a ROS duration object

Syntax
dur = rosduration
dur = rosduration(totalSecs)
dur = rosduration(secs,nsecs)
dur = rosduration (___ ,"DataFormat","struct")

Description
dur = rosduration returns a default ROS duration object. The properties for seconds and
nanoseconds are set to 0.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 1-143.

dur = rosduration(totalSecs) initializes the time values for seconds and nanoseconds based
on totalSecs, which represents the time in seconds as a floating-point number.

dur = rosduration(secs,nsecs) initializes the time values for seconds and nanoseconds
individually. Both inputs must be integers. Large values for nsecs are wrapped automatically with
the remainder added to secs.

dur = rosduration (___ ,"DataFormat","struct") uses message structures instead of
objects with any of the arguments in previous syntaxes. For more information, see “ROS Message
Structures” on page 1-143.

Examples

Work with ROS Duration Objects

Create ROS Duration objects, perform addition and subtraction, and compare duration objects. You
can also add duration objects to ROS Time objects to get another Time object.

Create a duration using seconds and nanoseconds.

dur1 = rosduration(100,2000000)

dur1 =
 ROS Duration with properties:

 Sec: 100

1 Functions

1-140

 Nsec: 2000000

Create a duration using a floating-point value. This sets the seconds using the integer portion and
nanoseconds with the remainder.

dur2 = rosduration(20.5)

dur2 =
 ROS Duration with properties:

 Sec: 20
 Nsec: 500000000

Add the two durations together to get a single duration.

dur3 = dur1 + dur2

dur3 =
 ROS Duration with properties:

 Sec: 120
 Nsec: 502000000

Subtract durations and get a negative duration. You can initialize durations with negative values as
well.

dur4 = dur2 - dur1

dur4 =
 ROS Duration with properties:

 Sec: -80
 Nsec: 498000000

dur5 = rosduration(-1,2000000)

dur5 =
 ROS Duration with properties:

 Sec: -1
 Nsec: 2000000

Compare durations.

dur1 > dur2

ans = logical
 1

Initialize a ROS network.

rosinit

Launching ROS Core...
..Done in 3.467 seconds.

 rosduration

1-141

Initializing ROS master on http://172.30.131.134:53868.
Initializing global node /matlab_global_node_27086 with NodeURI http://bat6234win64:50514/ and MasterURI http://localhost:53868.

Add a duration to a ROS Time object.

time = rostime('now','system')

time =
 ROS Time with properties:

 Sec: 1.6620e+09
 Nsec: 232065400

timeFuture = time + dur3

timeFuture =
 ROS Time with properties:

 Sec: 1.6620e+09
 Nsec: 734065400

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_27086 with NodeURI http://bat6234win64:50514/ and MasterURI http://localhost:53868.
Shutting down ROS master on http://172.30.131.134:53868.

Input Arguments
totalSecs — Total time
0 (default) | scalar

Total time, specified as a floating-point scalar. The integer portion is set to the Sec property with the
remainder applied to the Nsec property of the Duration object.

secs — Whole seconds
0 (default) | integer

Whole seconds, specified as an integer. This value is directly set to the Sec property of the Duration
object.

Note The maximum and minimum values for secs are [-2147483648, 2147483647].

nsecs — Nanoseconds
0 (default) | positive integer

Nanoseconds, specified as a positive integer. This value is directly set to the NSec property of the
Duration object unless it is greater than or equal to 109. The value is then wrapped and the
remainders are added to the value of secs.

1 Functions

1-142

Output Arguments
dur — Duration
ROS Duration object | structure

Duration, returned as a ROS Duration object or message structure with fields Sec and NSec

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rostime | rosmessage

 rosduration

1-143

rosgenmsg
Generate custom messages from ROS definitions

Syntax
rosgenmsg(folderpath)
rosgenmsg(folderpath,Name=Value)

Description
rosgenmsg(folderpath) generates ROS custom messages by reading ROS custom messages,
service definitions, and action definitions in the specified folder path. The function folder must
contain one or more ROS package folders. These packages contain the message definitions in .msg
files, service definitions in .srv files, and action definitions in .action files.

After you generate the custom messages, you can send and receive them in MATLAB like all the other
supported messages. You can create these messages using rosmessage or view the list of messages
by entering rosmsg list at the MATLAB Command Window.

Note

• To generate custom messages for ROS, you must build the ROS packages. This process requires
you to have access to CMake software and a C++ compiler for your platform. For more
information, see “ROS Toolbox System Requirements”

• With every new release of MATLAB, you must regenerate the custom messages from the ROS
definitions.

rosgenmsg(folderpath,Name=Value) specifies additional options using one or more name-value
arguments.

Examples

ROS Custom Message Support

Custom messages are messages that you define. Use custom messages to extend the set of message
types currently supported in ROS. If you are sending and receiving supported message types, you do
not need to use custom messages. To see the list of supported message types, enter rosmsg list in
the MATLAB Command Window. For more information about supported ROS messages, see “Work
with Basic ROS Messages”.

If this is your first time working with ROS custom messages, see “ROS Toolbox System
Requirements”.

ROS custom messages are specified in ROS package folders that contain a folder named msg. The
msg folder contains all your custom message type definitions. For example, the simple_msgs
package in the rosCustomMessages folder, has this folder and file structure.

1 Functions

1-144

The package contains the custom message type Num.msg. MATLAB uses these files to generate the
necessary files for using the custom messages contained in the package.

In this example, you create ROS custom messages in MATLAB and compress them in a shareable ZIP
archive. You must have a ROS package that contains the required msg file.

After you prepare your custom message package folder, you specify the path to the parent folder and
call rosgenmsg with the specified path.

Open a new MATLAB session and create a custom message package folder in a local folder. Choose a
short folder path when you generate custom messages on a Windows machine to avoid limitations on
the number of characters in the folder path. For example,

genDir = fullfile('C:/test/rosCustomMessages')

genDir = fullfile(pwd,'rosCustomMessages');
packagePath = fullfile(genDir,'simple_msgs');
mkdir(packagePath)

Create a folder named msg inside the custom message package folder.

mkdir(packagePath,'msg')

Create a file named .msg inside the msg folder.

messageDefinition = {'int64 num'};

fileID = fopen(fullfile(packagePath,'msg', ...
 'Num.msg'),'w');
fprintf(fileID,'%s\n',messageDefinition{:});
fclose(fileID);

Create a folder named srv inside the custom message package folder.

mkdir(packagePath,'srv')

Create a file named .srv inside the srv folder.

serviceDefinition = {'int64 a'
 'int64 b'
 '---'
 'int64 sum'};

fileID = fopen(fullfile(packagePath,'srv', ...
 'AddTwoInts.srv'),'w');
fprintf(fileID,'%s\n',serviceDefinition{:});
fclose(fileID);

 rosgenmsg

1-145

Create a folder named action inside the custom message package folder.

mkdir(packagePath,'action')

Create a file named .action inside the action folder.

actionDefinition = {'int64 goal'
 '---'
 'int64 result'
 '---'
 'int64 feedback'};

fileID = fopen(fullfile(packagePath,'action', ...
 'Test.action'),'w');
fprintf(fileID,'%s\n',actionDefinition{:});
fclose(fileID);

Generate custom messages from ROS definitions in .msg, .srv, and .action files. Use the
CreateShareableFile name-value argument to create a shareable ZIP archive of the generated
custom messages.

For information about how to use use this ZIP archive to register the custom messages in another
machine, see rosRegisterMessages.

rosgenmsg(genDir,CreateShareableFile=true)

Identifying message files in folder 'C:/test/rosCustomMessages'.Done.
Creating a Python virtual environment.Done.
Adding required Python packages to virtual environment.Done.
Copying include folders.Done.
Copying libraries.Done.
Validating message files in folder 'C:/test/rosCustomMessages'.Done.
[1/1] Generating MATLAB interfaces for custom message packages... Done.
Running catkin build in folder 'C:/test/rosCustomMessages/matlab_msg_gen_ros1/win64'.
Build in progress. This may take several minutes...
Build succeeded.build log
Generating zip file in the folder 'C:/test/rosCustomMessages'.Done.

To use the custom messages, follow these steps:

1. Add the custom message folder to the MATLAB path by executing:

addpath('C:\test\rosCustomMessages\matlab_msg_gen_ros1\win64\install\m')
savepath

2. Refresh all message class definitions, which requires clearing the workspace, by executing:

clear classes
rehash toolboxcache

3. Verify that you can use the custom messages.
 Enter "rosmsg list" and ensure that the output contains the generated
 custom message types.

1 Functions

1-146

Verify creation of the new custom messages by entering rosmsg list.

Input Arguments
folderpath — Path to ROS package folders
string scalar | character vector

Path to the ROS message packages, specified as a string scalar or character vector. The parent folder
must contain package folders. These folders contain a folder named /msg with .msg files for message
definitions, a folder named /srv with .srv files for service definitions, and a folder named /action
with .action files for action definitions.
Example: 'C:/test/rosCustomMessages'
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: BuildConfiguration='fasterruns'

BuildConfiguration — Allows for selecting different compiler optimizations when building
the message libraries
'fasterbuilds' | 'fasterruns'

Build configuration, specified as one of these values.

 rosgenmsg

1-147

• 'fasterbuilds' — Build the message libraries with compiler optimizations for shorter build
times. This is the default configuration.

• 'fasterruns' — Build the message libraries with compiler optimizations for faster execution.

Example: rosgenmsg('C:/test/rosCustomMessages',BuildConfiguration='fasterruns')
Data Types: char | string

CreateShareableFile — Option to generate shareable ZIP archive
false or 0 (default) | true or 1

Option to create a sharable ZIP archive, specified as a numeric or logical 1 (true) or 0 (false).

When you specify this argument as 1 (true), the function creates a ZIP archive be compressing the
install folder in the matlab_msg_gen_ros1 folder. You can use this file with another machine
running on the same platform and using the same MATLAB version.

When you specify this argument as 0 (false), the function does not create a ZIP archive.
Example: rosgenmsg('C:/test/rosCustomMessages',CreateShareableFile=true)
Data Types: logical

Limitations
MATLAB Compiler software do not support ROS custom messages and the rosgenmsg function.

Version History
Introduced in R2019b

See Also
rosmessage | rosmsg

Topics
“Create Custom Messages from ROS Package”
“ROS 2 Custom Message Support” on page 1-111

External Websites
ROS Tutorials: Defining Custom Messages
ROS Tutorials: Creating a ROS msg and srv

1 Functions

1-148

https://wiki.ros.org/ROS/Tutorials/DefiningCustomMessages
https://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv

rosinit
Connect to ROS network

Syntax
rosinit
rosinit(hostname)
rosinit(hostname,port)
rosinit(URI)
rosinit(___ ,Name,Value)

Description
rosinit starts the global ROS node with a default MATLAB name and tries to connect to a ROS
master running on localhost and port 11311. If the global ROS node cannot connect to the ROS
master, rosinit also starts a ROS core in MATLAB, which consists of a ROS master, a ROS
parameter server, and a rosout logging node.

Note The first time you connect to a ROS network, you must install and setup Python.

• From R2020b to R2021b, install Python 2.7.
• From R2022a or later, install Python 3.9.

To check your Python version in MATLAB, use the pyenv function. For more information, see “ROS
Toolbox System Requirements”.

rosinit(hostname) tries to connect to the ROS master at the host name or IP address specified by
hostname. This syntax uses 11311 as the default port number.

rosinit(hostname,port) tries to connect to the host name or IP address specified by hostname
and the port number specified by port.

rosinit(URI) tries to connect to the ROS master at the given resource identifier, URI, for example,
"http://192.168.1.1:11311".

rosinit(___ ,Name,Value) provides additional options specified by one or more Name,Value
pair arguments.

Using rosinit is a prerequisite for most ROS-related tasks in MATLAB because:

• Communicating with a ROS network requires a ROS node connected to a ROS master.
• By default, ROS functions in MATLAB operate on the global ROS node, or they operate on objects

that depend on the global ROS node.

For example, after creating a global ROS node with rosinit, you can subscribe to a topic on the
global ROS node. When another node on the ROS network publishes messages on that topic, the
global ROS node receives the messages.

 rosinit

1-149

https://www.python.org/downloads/

If a global ROS node already exists, then rosinit restarts the global ROS node based on the new set
of arguments.

For more advanced ROS networks, connecting to multiple ROS nodes or masters is possible using the
Node object.

Examples

Start ROS Core and Global Node

rosinit

Launching ROS Core...
...Done in 3.2713 seconds.
Initializing ROS master on http://172.30.131.134:59065.
Initializing global node /matlab_global_node_57403 with NodeURI http://bat6234win64:63542/ and MasterURI http://localhost:59065.

When you are finished, shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_57403 with NodeURI http://bat6234win64:63542/ and MasterURI http://localhost:59065.
Shutting down ROS master on http://172.30.131.134:59065.

Start Node and Connect to ROS Master at Specified IP Address

rosinit('192.168.17.128')

Initializing global node /matlab_global_node_57409 with NodeURI http://192.168.17.1:57782/

Shut down the ROS network when you are finished.

rosshutdown

Shutting down global node /matlab_global_node_57409 with NodeURI http://192.168.17.1:57782/

Start Global Node at Given IP and NodeName

rosinit('192.168.17.128', 'NodeHost','192.168.17.1','NodeName','/test_node')

Initializing global node /test_node with NodeURI http://192.168.17.1:57633/

Shut down the ROS network when you are finished.

rosshutdown

Shutting down global node /test_node with NodeURI http://192.168.17.1:57633/

1 Functions

1-150

Input Arguments
hostname — Host name or IP address
string scalar | character vector

Host name or IP address, specified as a string scalar or character vector.

port — Port number
numeric scalar

Port number used to connect to the ROS master, specified as a numeric scalar.

URI — URI for ROS master
string scalar | character vector

URI for ROS master, specified as a string scalar or character vector. Standard format for URIs is
either http://ipaddress:port or http://hostname:port

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "NodeHost","192.168.1.1"

NodeHost — Host name or IP address
character vector

Host name or IP address under which the node advertises itself to the ROS network, specified as the
comma-separated pair consisting of "NodeHost" and a character vector.
Example: "comp-home"

NodeName — Global node name
character vector

Global node name, specified as the comma-separated pair consisting of "NodeName" and a character
vector. The node that is created through rosinit is registered on the ROS network with this name.
Example: "NodeName","/test_node"

Version History
Introduced in R2019b

See Also
Node | rosshutdown

Topics
“Connect to a ROS Network”
“ROS Toolbox System Requirements”

 rosinit

1-151

rosmessage
Create ROS messages

Syntax
msg = rosmessage(messagetype)

msg = rosmessage(pub)
msg = rosmessage(sub)
msg = rosmessage(client)
msg = rosmessage(server)
msg = rosmessage(___ ,"DataFormat","struct")

Description
msg = rosmessage(messagetype) creates an empty ROS message object with message type. The
messagetype string scalar is case-sensitive and no partial matches are allowed. It must match a
message on the list given by calling rosmsg("list").

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 1-155.

msg = rosmessage(pub) creates an empty message determined by the topic published by pub.

msg = rosmessage(sub) creates an empty message determined by the subscribed topic of sub.

msg = rosmessage(client) creates an empty message determined by the service associated with
client.

msg = rosmessage(server) creates an empty message determined by the service type or action
type of server.

msg = rosmessage(___ ,"DataFormat","struct") creates an empty message as a message
structure with any of the arguments in previous syntaxes. For more information, see “ROS Message
Structures” on page 1-155.

Examples

Create Empty String Message

Create a ROS message as a structure with the std_msgs/String message type.

strMsg = rosmessage("std_msgs/String","DataFormat","struct")

strMsg = struct with fields:
 MessageType: 'std_msgs/String'

1 Functions

1-152

 Data: ''

Create ROS Publisher and Send Data

Start ROS master.

rosinit

Launching ROS Core...
...Done in 3.3042 seconds.
Initializing ROS master on http://172.30.131.134:56889.
Initializing global node /matlab_global_node_43987 with NodeURI http://bat6234win64:56007/ and MasterURI http://localhost:56889.

Create publisher for the /chatter topic with the std_msgs/String message type. Set the
"DataFormat" name-value argument to structure ROS messages.

chatpub = rospublisher("/chatter","std_msgs/String","DataFormat","struct");

Create a message to send. Specify the Data property with a character vector.

msg = rosmessage(chatpub);
msg.Data = 'test phrase';

Send the message via the publisher.

send(chatpub,msg);

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_43987 with NodeURI http://bat6234win64:56007/ and MasterURI http://localhost:56889.
Shutting down ROS master on http://172.30.131.134:56889.

Create and Access Array of ROS Messages

You can create an structure array to store multiple messages. The array is indexable, similar to any
other array. You can modify properties of each object or access specific properties from each element
using dot notation.

Create an array of two messages. Specify the DataFormat name-value argument to use structures
for ROS messages.

blankMsg = rosmessage("std_msgs/String","DataFormat","struct")

blankMsg = struct with fields:
 MessageType: 'std_msgs/String'
 Data: ''

msgArray = [blankMsg blankMsg]

msgArray=1×2 struct array with fields:
 MessageType

 rosmessage

1-153

 Data

Assign data to individual message fields in the array.

msgArray(1).Data = 'Some string';
msgArray(2).Data = 'Other string';

Read all the Data fields from the messages into a cell array.

allData = {msgArray.Data}

allData = 1x2 cell
 {'Some string'} {'Other string'}

Preallocate ROS Message Array

To preallocate an array using ROS messages as objects, use the arrayfun or cellfun functions
instead of repmat. These functions properly create object or cell arrays for handle classes.

Note: In a future release, ROS message objects will be removed. To use ROS messages as structures
and utilize structure arrays, specify the DataFormat name-value pair when calling the rosmessage
function.

Preallocate an object array of ROS messages.

msgArray = arrayfun(@(~) rosmessage("std_msgs/String"),zeros(1,50));

Preallocate a cell array of ROS messages.

msgCell = cellfun(@(~) rosmessage("std_msgs/String"),cell(1,50),"UniformOutput",false);

Input Arguments
messagetype — Message type
string scalar | character vector

Message type, specified as a string scalar or character vector. The string is case-sensitive and no
partial matches are allowed. It must match a message on the list given by calling rosmsg("list").

pub — ROS publisher
Publisher object handle

ROS publisher, specified as a Publisher object handle. You can create the object using
rospublisher.

sub — ROS subscriber
Subscriber object handle

ROS subscriber, specified as a Subscriber object handle. You can create the object using
rossubscriber.

client — ROS service client
ServiceClient object handle

1 Functions

1-154

ROS service client, specified as a ServiceClient object handle. You can create the object using
rossvcclient.

server — ROS service server
ServiceServer object handle

ROS service server, specified as a ServiceServer object handle. You can create the object using
rossvcserver.

Output Arguments
msg — ROS message
Message object handle | structure

ROS message, returned as a Message object handle or a structure.

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Unsupported ROS Message Types
Behavior changed in R2022a

Message Types
adhoc_communication/ExpAuction

 rosmessage

1-155

Message Types
adhoc_communication/ExpCluster
adhoc_communication/ExpFrontier
adhoc_communication/ExpFrontierElement
adhoc_communication/SendExpAuctionRequest
adhoc_communication/SendExpClusterRequest
adhoc_communication/SendExpFrontierRequest
arbotix_msgs/Analog
baxter_core_msgs/AssemblyState
baxter_core_msgs/AssemblyStates
baxter_core_msgs/EndEffectorProperties
baxter_core_msgs/HeadPanCommand
baxter_core_msgs/HeadState
baxter_core_msgs/NavigatorState
baxter_core_msgs/NavigatorStates
baxter_core_msgs/SEAJointState
baxter_maintenance_msgs/CalibrateArmData
baxter_maintenance_msgs/CalibrateArmEnable
capabilities/StartCapabilityResponse
cmvision/Blob
cmvision/Blobs
cob_grasp_generation/GenerateGraspsAction
cob_grasp_generation/GenerateGraspsActionGoal
cob_grasp_generation/GenerateGraspsGoal
cob_grasp_generation/QueryGraspsAction
cob_grasp_generation/QueryGraspsActionGoal
cob_grasp_generation/QueryGraspsGoal
cob_grasp_generation/ShowGraspsAction
cob_grasp_generation/ShowGraspsActionGoal
cob_grasp_generation/ShowGraspsGoal
cob_light/LightMode
cob_light/SetLightModeAction
cob_light/SetLightModeActionGoal
cob_light/SetLightModeActionResult
cob_light/SetLightModeGoal
cob_light/SetLightModeRequest
cob_light/SetLightModeResponse

1 Functions

1-156

Message Types
cob_light/SetLightModeResult
cob_lookat_action/LookAtAction
cob_lookat_action/LookAtActionFeedback
cob_lookat_action/LookAtActionGoal
cob_lookat_action/LookAtActionResult
cob_lookat_action/LookAtFeedback
cob_lookat_action/LookAtGoal
cob_lookat_action/LookAtResult
cob_pick_place_action/CobPickAction
cob_pick_place_action/CobPickActionGoal
cob_pick_place_action/CobPickGoal
cob_script_server/ScriptState
cob_script_server/StateAction
cob_script_server/StateActionGoal
cob_script_server/StateGoal
cob_sound/SayAction
cob_sound/SayActionGoal
cob_sound/SayActionResult
cob_sound/SayGoal
cob_sound/SayResult
cob_srvs/SetFloatResponse
cob_srvs/SetIntResponse
cob_srvs/SetStringResponse
control_toolbox/SetPidGainsRequest
controller_manager_msgs/ControllerState
controller_manager_msgs/ListControllersResponse
controller_manager_msgs/SwitchControllerRequest
data_vis_msgs/DataVis
data_vis_msgs/ValueList
designator_integration_msgs/Designator
designator_integration_msgs/DesignatorCommunicationRequest
designator_integration_msgs/DesignatorCommunicationResponse
designator_integration_msgs/DesignatorRequest
designator_integration_msgs/DesignatorResponse
designator_integration_msgs/KeyValuePair
gateway_msgs/GatewayInfo

 rosmessage

1-157

Message Types
gateway_msgs/RemoteGateway
gateway_msgs/RemoteGatewayInfoResponse
graph_msgs/GeometryGraph
grizzly_msgs/Ambience
hector_nav_msgs/GetNormalResponse
image_view2/ImageMarker2
jsk_rviz_plugins/OverlayMenu
jsk_topic_tools/UpdateRequest
kobuki_msgs/ButtonEvent
kobuki_msgs/KeyboardInput
leap_motion/leapros
moveit_msgs/AttachedCollisionObject
moveit_msgs/CollisionObject
moveit_msgs/Constraints
moveit_msgs/DisplayRobotState
moveit_msgs/DisplayTrajectory
moveit_msgs/ExecuteKnownTrajectoryResponse
moveit_msgs/GetCartesianPathRequest
moveit_msgs/GetCartesianPathResponse
moveit_msgs/GetMotionPlanRequest
moveit_msgs/GetMotionPlanResponse
moveit_msgs/GetPlanningSceneResponse
moveit_msgs/GetPositionFKRequest
moveit_msgs/GetPositionFKResponse
moveit_msgs/GetPositionIKRequest
moveit_msgs/GetPositionIKResponse
moveit_msgs/GetStateValidityRequest
moveit_msgs/MotionPlanDetailedResponse
moveit_msgs/MotionPlanRequest
moveit_msgs/MotionPlanResponse
moveit_msgs/MoveGroupAction
moveit_msgs/MoveGroupActionGoal
moveit_msgs/MoveGroupActionResult
moveit_msgs/MoveGroupGoal
moveit_msgs/MoveGroupResult
moveit_msgs/MoveItErrorCodes

1 Functions

1-158

Message Types
moveit_msgs/OrientationConstraint
moveit_msgs/PickupAction
moveit_msgs/PickupActionGoal
moveit_msgs/PickupActionResult
moveit_msgs/PickupGoal
moveit_msgs/PickupResult
moveit_msgs/PlaceAction
moveit_msgs/PlaceActionGoal
moveit_msgs/PlaceActionResult
moveit_msgs/PlaceGoal
moveit_msgs/PlaceLocation
moveit_msgs/PlaceResult
moveit_msgs/PlannerInterfaceDescription
moveit_msgs/PlanningOptions
moveit_msgs/PlanningScene
moveit_msgs/PlanningSceneWorld
moveit_msgs/PositionIKRequest
moveit_msgs/QueryPlannerInterfacesResponse
moveit_msgs/RobotState
moveit_msgs/TrajectoryConstraints
pddl_msgs/PDDLAction
pddl_msgs/PDDLActionArray
pddl_msgs/PDDLDomain
pddl_msgs/PDDLPlannerAction
pddl_msgs/PDDLPlannerActionGoal
pddl_msgs/PDDLPlannerActionResult
pddl_msgs/PDDLPlannerGoal
pddl_msgs/PDDLPlannerResult
pddl_msgs/PDDLStep
posedetection_msgs/DetectResponse
posedetection_msgs/Object6DPose
posedetection_msgs/ObjectDetection
roboteq_msgs/Command
robotnik_msgs/Axis
robotnik_msgs/MotorStatus
robotnik_msgs/MotorsStatus

 rosmessage

1-159

Message Types
rocon_std_msgs/MasterInfo
rocon_std_msgs/Strings
scheduler_msgs/CurrentStatus
scheduler_msgs/KnownResources
scheduler_msgs/Request
scheduler_msgs/Resource
scheduler_msgs/SchedulerRequests
sound_play/SoundRequest
stdr_msgs/KinematicMsg
stdr_msgs/RegisterGuiResponse
stdr_msgs/RegisterRobotAction
stdr_msgs/RegisterRobotActionResult
stdr_msgs/RegisterRobotResult
stdr_msgs/RobotIndexedMsg
stdr_msgs/RobotIndexedVectorMsg
stdr_msgs/RobotMsg
stdr_msgs/SpawnRobotAction
stdr_msgs/SpawnRobotActionGoal
stdr_msgs/SpawnRobotActionResult
stdr_msgs/SpawnRobotGoal
stdr_msgs/SpawnRobotResult
visp_tracker/InitRequest
visp_tracker/KltSettings
visp_tracker/MovingEdgeSettings
wireless_msgs/Connection

Newly Added ROS Message Types
Behavior changed in R2022a

Message Types
adhoc_communication/ExpAuctionElement
adhoc_communication/ExpClusterElement
audio_common_msgs/AudioInfo
baxter_core_msgs/URDFConfiguration
clearpath_base/GPADCOutput
clearpath_base/GPIO
clearpath_base/Joy
clearpath_base/JoySwitch

1 Functions

1-160

Message Types
clearpath_base/Magnetometer
clearpath_base/Orientation
clearpath_base/RotateRate
clearpath_base/StateChange
cob_light/ColorRGBAArray
cob_light/LightModes
cob_light/Sequence
cob_light/StopLightModeRequest
cob_light/StopLightModeResponse
cob_perception_msgs/ColorDepthImage
cob_perception_msgs/ColorDepthImageArray
cob_perception_msgs/Detection
cob_perception_msgs/DetectionArray
cob_perception_msgs/Float64ArrayStamped
cob_perception_msgs/Mask
cob_perception_msgs/People
cob_perception_msgs/Person
cob_perception_msgs/PersonStamped
cob_perception_msgs/PositionMeasurement
cob_perception_msgs/PositionMeasurementArray
cob_perception_msgs/Rect
cob_perception_msgs/Skeleton
cob_script_server/ComposeTrajectoryRequest
cob_script_server/ComposeTrajectoryResponse
cob_sound/PlayAction
cob_sound/PlayActionFeedback
cob_sound/PlayActionGoal
cob_sound/PlayActionResult
cob_sound/PlayFeedback
cob_sound/PlayGoal
cob_sound/PlayResult
cob_srvs/DockRequest
cob_srvs/DockResponse
controller_manager_msgs/HardwareInterfaceResources
data_vis_msgs/Speech
data_vis_msgs/Task

 rosmessage

1-161

Message Types
data_vis_msgs/TaskTree
fkie_multimaster_msgs/DiscoverMastersRequest
fkie_multimaster_msgs/DiscoverMastersResponse
fkie_multimaster_msgs/GetSyncInfoRequest
fkie_multimaster_msgs/GetSyncInfoResponse
fkie_multimaster_msgs/LinkState
fkie_multimaster_msgs/LinkStatesStamped
fkie_multimaster_msgs/LoadLaunchRequest
fkie_multimaster_msgs/LoadLaunchResponse
fkie_multimaster_msgs/MasterState
fkie_multimaster_msgs/ROSMaster
fkie_multimaster_msgs/SyncMasterInfo
fkie_multimaster_msgs/SyncServiceInfo
fkie_multimaster_msgs/SyncTopicInfo
fkie_multimaster_msgs/TaskRequest
fkie_multimaster_msgs/TaskResponse
gateway_msgs/ConnectionStatistics
gateway_msgs/RemoteRuleWithStatus
gazebo_msgs/DeleteLightRequest
gazebo_msgs/DeleteLightResponse
gazebo_msgs/GetLightPropertiesRequest
gazebo_msgs/GetLightPropertiesResponse
gazebo_msgs/PerformanceMetrics
gazebo_msgs/SensorPerformanceMetric
gazebo_msgs/SetLightPropertiesRequest
gazebo_msgs/SetLightPropertiesResponse
geographic_msgs/GeoPath
geographic_msgs/GeoPointStamped
geographic_msgs/GeoPoseStamped
geographic_msgs/GetGeoPathRequest
geographic_msgs/GetGeoPathResponse
grizzly_msgs/Indicators
grizzly_msgs/Status
hector_mapping/ResetMappingRequest
hector_mapping/ResetMappingResponse
image_view2/ChangeModeRequest

1 Functions

1-162

Message Types
image_view2/ChangeModeResponse
image_view2/MouseEvent
jsk_footstep_controller/FootCoordsLowLevelInfo
jsk_footstep_controller/GoPosAction
jsk_footstep_controller/GoPosActionFeedback
jsk_footstep_controller/GoPosActionGoal
jsk_footstep_controller/GoPosActionResult
jsk_footstep_controller/GoPosFeedback
jsk_footstep_controller/GoPosGoal
jsk_footstep_controller/GoPosResult
jsk_footstep_controller/GroundContactState
jsk_footstep_controller/LookAroundGroundAction
jsk_footstep_controller/LookAroundGroundActionFeedback
jsk_footstep_controller/LookAroundGroundActionGoal
jsk_footstep_controller/LookAroundGroundActionResult
jsk_footstep_controller/LookAroundGroundFeedback
jsk_footstep_controller/LookAroundGroundGoal
jsk_footstep_controller/LookAroundGroundResult
jsk_footstep_controller/RequireMonitorStatusRequest
jsk_footstep_controller/RequireMonitorStatusResponse
jsk_footstep_controller/SynchronizedForces
jsk_gui_msgs/SlackMessage
jsk_gui_msgs/YesNoRequest
jsk_gui_msgs/YesNoResponse
jsk_network_tools/AllTypeTest
jsk_network_tools/CompressedAngleVectorPR2
jsk_network_tools/FC2OCS
jsk_network_tools/FC2OCSLargeData
jsk_network_tools/OCS2FC
jsk_network_tools/OpenNISample
jsk_network_tools/SetSendRateRequest
jsk_network_tools/SetSendRateResponse
jsk_network_tools/SilverhammerInternalBuffer
jsk_network_tools/WifiStatus
jsk_rviz_plugins/EusCommandRequest
jsk_rviz_plugins/EusCommandResponse

 rosmessage

1-163

Message Types
jsk_rviz_plugins/ObjectFitCommand
jsk_rviz_plugins/Pictogram
jsk_rviz_plugins/PictogramArray
jsk_rviz_plugins/RecordCommand
jsk_rviz_plugins/RequestMarkerOperateRequest
jsk_rviz_plugins/RequestMarkerOperateResponse
jsk_rviz_plugins/ScreenshotRequest
jsk_rviz_plugins/ScreenshotResponse
jsk_rviz_plugins/StringStamped
jsk_rviz_plugins/TransformableMarkerOperate
jsk_topic_tools/ChangeTopicRequest
jsk_topic_tools/ChangeTopicResponse
jsk_topic_tools/PassthroughDurationRequest
jsk_topic_tools/PassthroughDurationResponse
kingfisher_msgs/Power
kobuki_msgs/ScanAngle
leap_motion/Bone
leap_motion/Finger
leap_motion/Gesture
leap_motion/Hand
leap_motion/Human
move_base_msgs/RecoveryStatus
moveit_msgs/ApplyPlanningSceneRequest
moveit_msgs/ApplyPlanningSceneResponse
moveit_msgs/CartesianPoint
moveit_msgs/CartesianTrajectory
moveit_msgs/CartesianTrajectoryPoint
moveit_msgs/ChangeControlDimensionsRequest
moveit_msgs/ChangeControlDimensionsResponse
moveit_msgs/ChangeDriftDimensionsRequest
moveit_msgs/ChangeDriftDimensionsResponse
moveit_msgs/CheckIfRobotStateExistsInWarehouseRequest
moveit_msgs/CheckIfRobotStateExistsInWarehouseResponse
moveit_msgs/DeleteRobotStateFromWarehouseRequest
moveit_msgs/DeleteRobotStateFromWarehouseResponse
moveit_msgs/ExecuteTrajectoryAction

1 Functions

1-164

Message Types
moveit_msgs/ExecuteTrajectoryActionFeedback
moveit_msgs/ExecuteTrajectoryActionGoal
moveit_msgs/ExecuteTrajectoryActionResult
moveit_msgs/ExecuteTrajectoryFeedback
moveit_msgs/ExecuteTrajectoryGoal
moveit_msgs/ExecuteTrajectoryResult
moveit_msgs/GenericTrajectory
moveit_msgs/GetMotionSequenceRequest
moveit_msgs/GetMotionSequenceResponse
moveit_msgs/GetPlannerParamsRequest
moveit_msgs/GetPlannerParamsResponse
moveit_msgs/GetRobotStateFromWarehouseRequest
moveit_msgs/GetRobotStateFromWarehouseResponse
moveit_msgs/GraspPlanningRequest
moveit_msgs/GraspPlanningResponse
moveit_msgs/ListRobotStatesInWarehouseRequest
moveit_msgs/ListRobotStatesInWarehouseResponse
moveit_msgs/MotionSequenceItem
moveit_msgs/MotionSequenceRequest
moveit_msgs/MotionSequenceResponse
moveit_msgs/MoveGroupSequenceAction
moveit_msgs/MoveGroupSequenceActionFeedback
moveit_msgs/MoveGroupSequenceActionGoal
moveit_msgs/MoveGroupSequenceActionResult
moveit_msgs/MoveGroupSequenceFeedback
moveit_msgs/MoveGroupSequenceGoal
moveit_msgs/MoveGroupSequenceResult
moveit_msgs/PlannerParams
moveit_msgs/RenameRobotStateInWarehouseRequest
moveit_msgs/RenameRobotStateInWarehouseResponse
moveit_msgs/SaveRobotStateToWarehouseRequest
moveit_msgs/SaveRobotStateToWarehouseResponse
moveit_msgs/SetPlannerParamsRequest
moveit_msgs/SetPlannerParamsResponse
moveit_msgs/UpdatePointcloudOctomapRequest
moveit_msgs/UpdatePointcloudOctomapResponse

 rosmessage

1-165

Message Types
multisense_ros/DeviceStatus
posedetection_msgs/TargetObjRequest
posedetection_msgs/TargetObjResponse
rmp_msgs/RMPBatteryStatus
rmp_msgs/RMPCommand
rmp_msgs/RMPFeedback
robotnik_msgs/BatteryDockingStatus
robotnik_msgs/BatteryDockingStatusStamped
robotnik_msgs/BatteryStatus
robotnik_msgs/BatteryStatusStamped
robotnik_msgs/BoolArray
robotnik_msgs/Cartesian_Euler_pose
robotnik_msgs/ElevatorAction
robotnik_msgs/ElevatorStatus
robotnik_msgs/GetBoolRequest
robotnik_msgs/GetBoolResponse
robotnik_msgs/GetMotorsHeadingOffsetRequest
robotnik_msgs/GetMotorsHeadingOffsetResponse
robotnik_msgs/InsertTaskRequest
robotnik_msgs/InsertTaskResponse
robotnik_msgs/InverterStatus
robotnik_msgs/LaserMode
robotnik_msgs/LaserStatus
robotnik_msgs/MotorHeadingOffset
robotnik_msgs/MotorPID
robotnik_msgs/MotorsStatusDifferential
robotnik_msgs/Pose2DArray
robotnik_msgs/Pose2DStamped
robotnik_msgs/PresenceSensor
robotnik_msgs/PresenceSensorArray
robotnik_msgs/QueryAlarm
robotnik_msgs/QueryAlarmsRequest
robotnik_msgs/QueryAlarmsResponse
robotnik_msgs/Register
robotnik_msgs/Registers
robotnik_msgs/ResetFromSubStateRequest

1 Functions

1-166

Message Types
robotnik_msgs/ResetFromSubStateResponse
robotnik_msgs/ReturnMessage
robotnik_msgs/RobotnikMotorsStatus
robotnik_msgs/SafetyModuleStatus
robotnik_msgs/SetBuzzerRequest
robotnik_msgs/SetBuzzerResponse
robotnik_msgs/SetByteRequest
robotnik_msgs/SetByteResponse
robotnik_msgs/SetElevatorAction
robotnik_msgs/SetElevatorActionFeedback
robotnik_msgs/SetElevatorActionGoal
robotnik_msgs/SetElevatorActionResult
robotnik_msgs/SetElevatorFeedback
robotnik_msgs/SetElevatorGoal
robotnik_msgs/SetElevatorRequest
robotnik_msgs/SetElevatorResponse
robotnik_msgs/SetElevatorResult
robotnik_msgs/SetEncoderTurnsRequest
robotnik_msgs/SetEncoderTurnsResponse
robotnik_msgs/SetLaserModeRequest
robotnik_msgs/SetLaserModeResponse
robotnik_msgs/SetMotorModeRequest
robotnik_msgs/SetMotorModeResponse
robotnik_msgs/SetMotorPIDRequest
robotnik_msgs/SetMotorPIDResponse
robotnik_msgs/SetMotorStatusRequest
robotnik_msgs/SetMotorStatusResponse
robotnik_msgs/SetNamedDigitalOutputRequest
robotnik_msgs/SetNamedDigitalOutputResponse
robotnik_msgs/SetTransformRequest
robotnik_msgs/SetTransformResponse
robotnik_msgs/State
robotnik_msgs/StringArray
robotnik_msgs/SubState
robotnik_msgs/ack_alarmRequest
robotnik_msgs/ack_alarmResponse

 rosmessage

1-167

Message Types
robotnik_msgs/alarmmonitor
robotnik_msgs/alarmsmonitor
robotnik_msgs/get_alarmsRequest
robotnik_msgs/get_alarmsResponse
robotnik_msgs/get_modbus_registerRequest
robotnik_msgs/get_modbus_registerResponse
robotnik_msgs/named_input_output
robotnik_msgs/named_inputs_outputs
robotnik_msgs/set_CartesianEuler_poseRequest
robotnik_msgs/set_CartesianEuler_poseResponse
robotnik_msgs/set_modbus_registerRequest
robotnik_msgs/set_modbus_registerResponse
robotnik_msgs/set_named_digital_outputRequest
robotnik_msgs/set_named_digital_outputResponse
rocon_std_msgs/Connection
rocon_std_msgs/ConnectionCacheSpin
rocon_std_msgs/ConnectionsDiff
rocon_std_msgs/ConnectionsList
rocon_std_msgs/EmptyStringRequest
rocon_std_msgs/EmptyStringResponse
rocon_std_msgs/Float32Stamped
roseus/FixedArray
roseus/TestName
roseus/VariableArray
rospy_message_converter/NestedUint8ArrayTestMessage
rospy_message_converter/NestedUint8ArrayTestServiceRequest
rospy_message_converter/NestedUint8ArrayTestServiceResponse
rospy_message_converter/Uint8Array3TestMessage
rospy_message_converter/Uint8ArrayTestMessage
rtt_ros_msgs/EvalRequest
rtt_ros_msgs/EvalResponse
schunk_sdh/PressureArray
schunk_sdh/PressureArrayList
schunk_sdh/TemperatureArray
sound_play/SoundRequestAction
sound_play/SoundRequestActionFeedback

1 Functions

1-168

Message Types
sound_play/SoundRequestActionGoal
sound_play/SoundRequestActionResult
sound_play/SoundRequestFeedback
sound_play/SoundRequestGoal
sound_play/SoundRequestResult
speech_recognition_msgs/Grammar
speech_recognition_msgs/PhraseRule
speech_recognition_msgs/SpeechRecognitionRequest
speech_recognition_msgs/SpeechRecognitionResponse
speech_recognition_msgs/Vocabulary
visp_tracker/TrackerSettings

Deleted ROS Message Types
Behavior changed in R2022a

Message Types
baxter_core_msgs/ITBState
baxter_core_msgs/ITBStates
cob_relayboard/EmergencyStopState
cob_sound/SayTextRequest
cob_sound/SayTextResponse
cob_srvs/GetPoseStampedTransformedRequest
cob_srvs/GetPoseStampedTransformedResponse
cob_srvs/SetDefaultVelRequest
cob_srvs/SetDefaultVelResponse
cob_srvs/SetJointStiffnessRequest
cob_srvs/SetJointStiffnessResponse
cob_srvs/SetJointTrajectoryRequest
cob_srvs/SetJointTrajectoryResponse
cob_srvs/SetMaxVelRequest
cob_srvs/SetMaxVelResponse
cob_srvs/SetOperationModeRequest
cob_srvs/SetOperationModeResponse
cob_srvs/TriggerRequest
cob_srvs/TriggerResponse
grizzly_msgs/Drive
grizzly_msgs/RawStatus
jsk_gui_msgs/DeviceSensorALL

 rosmessage

1-169

Message Types
jsk_gui_msgs/Imu
moveit_msgs/GetConstraintAwarePositionIKRequest
moveit_msgs/GetConstraintAwarePositionIKResponse
moveit_msgs/GetKinematicSolverInfoRequest
moveit_msgs/GetKinematicSolverInfoResponse
rmp_msgs/AudioCommand
rmp_msgs/Battery
rmp_msgs/BoolStamped
rmp_msgs/FaultStatus
rmp_msgs/MotorStatus
rocon_std_msgs/GetPlatformInfoRequest
rocon_std_msgs/GetPlatformInfoResponse
rocon_std_msgs/PlatformInfo
rosserial_msgs/RequestMessageInfoRequest
rosserial_msgs/RequestMessageInfoResponse

Message Packages Deprecated in ROS Noetic
Behavior changed in R2022a

Message Packages
cob_camera_sensors
cob_kinematics
cob_relayboard
cob_trajectory_controller
hrpsys_gazebo_msgs
iai_pancake_perception_action
jaco_msgs
linux_hardware
lizi
mln_robosherlock_msgs
mongodb_store_msgs
monocam_settler
nao_interaction_msgs
nao_msgs
network_monitor_udp
nmea_msgs
p2os_driver
pano_ros

1 Functions

1-170

Message Packages
pcl_msgs
play_motion_msgs
program_queue
rosauth
saphari_msgs
scanning_table_msgs
segbot_gui
sherlock_sim_msgs
simple_robot_control
sr_ronex_msgs
statistics_msgs
underwater_sensor_msgs
uuid_msgs
yocs_msgs

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for struct messages.
• For messages with fields containing cell array of strings, such as sensor_msgs/JointState,

accessing those fields in the MATLAB function is not supported.

See Also
Functions
rostopic | rosmsg

Objects
rospublisher | rossubscriber

Topics
“Work with Basic ROS Messages”
“Built-In Message Support”

 rosmessage

1-171

rosmsg
Retrieve information about ROS messages and message types

Syntax
rosmsg show msgtype
rosmsg md5 msgtype
rosmsg list

msginfo = rosmsg("show", msgtype)
msgmd5 = rosmsg("md5", msgtype)
msglist = rosmsg("list")

Description
rosmsg show msgtype returns the definition of the msgtype message.

rosmsg md5 msgtype returns the MD5 checksum of the msgtype message.

rosmsg list returns all available message types that you can use in MATLAB.

msginfo = rosmsg("show", msgtype) returns the definition of the msgtype message as a
character vector.

msgmd5 = rosmsg("md5", msgtype) returns the ‘MD5’ checksum of the msgtype message as a
character vector.

msglist = rosmsg("list") returns a cell array containing all available message types that you
can use in MATLAB.

Examples

Retrieve Message Type Definition

msgInfo = rosmsg('show','geometry_msgs/Point')

msgInfo =
 '% This contains the position of a point in free space
 double X
 double Y
 double Z
 '

Get the MD5 Checksum of Message Type

msgMd5 = rosmsg('md5','geometry_msgs/Point')

1 Functions

1-172

msgMd5 =
'4a842b65f413084dc2b10fb484ea7f17'

Input Arguments
msgtype — ROS message type
character vector

ROS message type, specified as a character vector. msgType must be a valid ROS message type from
ROS that MATLAB supports.
Example: "std_msgs/Int8"

Output Arguments
msginfo — Details of message definition
character vector

Details of the information inside the ROS message definition, returned as a character vector.

msgmd5 — MD5 checksum hash value
character vector

MD5 checksum hash value, returned as a character vector. The MD5 output is a character vector
representation of the 16-byte hash value that follows the MD5 standard.

msglist — List of all message types available in MATLAB
cell array of character vectors

List of all message types available in MATLAB, returned as a cell array of character vectors.

Version History
Introduced in R2019b

 rosmsg

1-173

rosnode
Retrieve information about ROS network nodes

Syntax
rosnode list
rosnode info nodename
rosnode ping nodename

nodelist = rosnode("list")
nodeinfo = rosnode("info",nodename)
rosnode("ping",nodename)

Description
rosnode list returns a list of all nodes registered on the ROS network. Use these nodes to
exchange data between MATLAB and the ROS network.

rosnode info nodename returns a structure containing the name, URI, publications, subscriptions,
and services of a specific ROS node, nodename.

rosnode ping nodename pings a specific node, nodename, and displays the response time.

nodelist = rosnode("list") returns a cell array of character vectors containing the nodes
registered on the ROS network.

nodeinfo = rosnode("info",nodename) returns a structure containing the name, URI,
publications, subscriptions, and services of a specific ROS node, nodename.

rosnode("ping",nodename) pings a specific node, nodename and displays the response time.

Examples

Retrieve List of ROS Nodes

Note: This example requires a valid ROS network to be active with ROS nodes previously set up.

Connect to the ROS network. Specify the IP address for your specific network.

rosinit('192.168.17.128')

Initializing global node /matlab_global_node_99071 with NodeURI http://192.168.17.1:64076/

List the nodes available from the ROS master.

rosnode list

/gazebo
/laserscan_nodelet_manager
/matlab_global_node_99071

1 Functions

1-174

/mobile_base_nodelet_manager
/robot_state_publisher
/rosout

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_99071 with NodeURI http://192.168.17.1:64076/

Retrieve ROS Node Information

Connect to the ROS network. Specify the IP address for your specific network.

rosinit('192.168.17.128')

Initializing global node /matlab_global_node_96994 with NodeURI http://192.168.17.1:64267/

Get information on the '/robot_state_publisher' node. This node is available on the ROS master.

nodeinfo = rosnode('info','/robot_state_publisher')

nodeinfo = struct with fields:
 NodeName: '/robot_state_publisher'
 URI: 'http://192.168.17.128:43330/'
 Publications: [3×1 struct]
 Subscriptions: [2×1 struct]
 Services: [2×1 struct]

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_96994 with NodeURI http://192.168.17.1:64267/

Ping ROS Node

Connect to the ROS network. Specify the IP address for your specific network.

rosinit('192.168.17.128')

Initializing global node /matlab_global_node_59489 with NodeURI http://192.168.17.1:64471/

Ping the '/robot_state_publisher' node. This node is available on the ROS master.

nodeinfo = rosnode('info','/robot_state_publisher')

nodeinfo = struct with fields:
 NodeName: '/robot_state_publisher'
 URI: 'http://192.168.17.128:43330/'
 Publications: [3×1 struct]
 Subscriptions: [2×1 struct]
 Services: [2×1 struct]

 rosnode

1-175

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_59489 with NodeURI http://192.168.17.1:64471/

Input Arguments
nodename — Name of node
string scalar | character vector

Name of node, specified as a string scalar or character vector. The name of the node must match the
name given in ROS.

Output Arguments
nodeinfo — Information about ROS node
structure

Information about ROS node, returned as a structure containing these fields: NodeName, URI,
Publications, Subscriptions, and Services. Access these properties using dot syntax, for
example, nodeinfo.NodeName.

nodelist — List of node names available
cell array of character vectors

List of node names available, returned as a cell array of character vectors.

Version History
Introduced in R2019b

See Also
rosinit | rostopic

1 Functions

1-176

rosparam
Access ROS parameter server values

Syntax
list = rosparam("list")
list = rosparam("list",namespace)
pvalOut = rosparam("get",pname)
pvalOut = rosparam("get",namespace)
rosparam("set",pname,pval)
rosparam("delete",pname)
rosparam("delete",namespace)

ptree = rosparam

Description
list = rosparam("list") returns the list of all ROS parameter names from the ROS master.

Simplified form: rosparam list

list = rosparam("list",namespace) returns the list of all parameter names under the
specified ROS namespace.

Simplified form: rosparam list namespace

pvalOut = rosparam("get",pname) retrieves the value of the specified parameter.

Simplified form: rosparam get pname

pvalOut = rosparam("get",namespace) retrieves the values of all parameters under the
specified namespace as a structure.

Simplified form: rosparam get namespace

rosparam("set",pname,pval) sets a value for a specified parameter name. If the parameter
name does not exist, the function adds a new parameter in the parameter tree.

Simplified form: rosparam set pname pval

See “Limitations” on page 1-182 for limitations on pval.

rosparam("delete",pname) deletes a parameter from the parameter tree. If the parameter does
not exist, the function displays an error.

Simplified form: rosparam delete pname

rosparam("delete",namespace) deletes all parameters under the given namespace from the
parameter tree.

Simplified form: rosparam delete namespace

 rosparam

1-177

ptree = rosparam creates a parameter tree object, ptree. After ptree is created, the connection
to the parameter server remains persistent until the object is deleted or the ROS master becomes
unavailable.

A ROS parameter tree communicates with the ROS parameter server. The ROS parameter server can
store strings, integers, doubles, Booleans and cell arrays. The parameters are accessible by every
node in the ROS network. Use the parameters to store static data such as configuration parameters.
Use the get, set, has, search, and del functions to manipulate and view parameter values.

The following ROS data types are supported as values of parameters. For each ROS data type, the
corresponding MATLAB data type is also listed.

• 32-bit integer — int32
• Boolean — logical
• double — double
• string — character vector (char)
• list — cell array (cell)
• dictionary — structure (struct)

Examples

Get and Set Parameter Values

Connect to a ROS network to set and get ROS parameter values on the ROS parameter tree. You can
get lists of parameters in their given namespaces as well. This example uses the simplified form that
mimics the ROS command-line interface.

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.2671 seconds.
Initializing ROS master on http://172.30.131.134:53425.
Initializing global node /matlab_global_node_42828 with NodeURI http://bat6234win64:62222/ and MasterURI http://localhost:53425.

Set parameter values.

rosparam set /string_param 'param_value'
rosparam set /double_param 1.2

To set a list parameter, use the functional form.

rosparam('set', '/list_param', {int32(5), 124.1, -20, 'some_string'});

Get the list of parameters using the command-line form.

rosparam list

/double_param
/list_param
/string_param

List parameters in a specific namespace.

1 Functions

1-178

rosparam list /double

/double_param

Get the value of a specific parameter.

rosparam get /list_param

{5, 124.1, -20, some_string}

Delete a parameter. List the parameters to verify it was deleted.

rosparam delete /double_param
rosparam list

/list_param
/string_param

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_42828 with NodeURI http://bat6234win64:62222/ and MasterURI http://localhost:53425.
Shutting down ROS master on http://172.30.131.134:53425.

Create Parameter Tree Object and View Parameters

Connect to the ROS network. ROS parameters should already be available on the ROS master.

rosinit('192.168.17.128')

Initializing global node /matlab_global_node_91663 with NodeURI http://192.168.17.1:52951/

Create a ParameterTree object using rosparam.

ptree = rosparam;

List the available parameters on the ROS master.

ptree.AvailableParameters

ans = 33×1 cell array
 {'/bumper2pointcloud/pointcloud_radius' }
 {'/camera/imager_rate' }
 {'/camera/rgb/image_raw/compressed/format' }
 {'/camera/rgb/image_raw/compressed/jpeg_quality'}
 {'/camera/rgb/image_raw/compressed/png_level' }
 {'/cmd_vel_mux/yaml_cfg_file' }
 {'/depthimage_to_laserscan/output_frame_id' }
 {'/depthimage_to_laserscan/range_max' }
 {'/depthimage_to_laserscan/range_min' }
 {'/depthimage_to_laserscan/scan_height' }
 {'/depthimage_to_laserscan/scan_time' }
 {'/gazebo/auto_disable_bodies' }
 {'/gazebo/cfm' }
 {'/gazebo/contact_max_correcting_vel' }
 {'/gazebo/contact_surface_layer' }

 rosparam

1-179

 {'/gazebo/erp' }
 {'/gazebo/gravity_x' }
 {'/gazebo/gravity_y' }
 {'/gazebo/gravity_z' }
 {'/gazebo/max_contacts' }
 {'/gazebo/max_update_rate' }
 {'/gazebo/sor_pgs_iters' }
 {'/gazebo/sor_pgs_precon_iters' }
 {'/gazebo/sor_pgs_rms_error_tol' }
 {'/gazebo/sor_pgs_w' }
 {'/gazebo/time_step' }
 {'/robot_description' }
 {'/robot_state_publisher/publish_frequency' }
 {'/rosdistro' }
 {'/roslaunch/uris/host_192_168_17_128__34863' }
 {'/rosversion' }
 {'/run_id' }
 {'/use_sim_time' }

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_91663 with NodeURI http://192.168.17.1:52951/

Set A Dictionary Of Parameter Values

Use structures to specify a dictionary of ROS parameters under a specific namespace.

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.9335 seconds.
Initializing ROS master on http://172.30.131.134:59411.
Initializing global node /matlab_global_node_77544 with NodeURI http://bat6234win64:54825/ and MasterURI http://localhost:59411.

Create a dictionary of parameter values. This dictionary contains the information relevant to an
image. Display the structure to verify values.

image = imread('peppers.png');

pval.ImageWidth = size(image,1);
pval.ImageHeight = size(image,2);
pval.ImageTitle = 'peppers.png';
disp(pval)

 ImageWidth: 384
 ImageHeight: 512
 ImageTitle: 'peppers.png'

Set the dictionary of values using the desired namespace.

rosparam('set','ImageParam',pval)

1 Functions

1-180

Get the parameters using the namespace. Verify the parameter values.

pval2 = rosparam('get','ImageParam')

pval2 = struct with fields:
 ImageHeight: 512
 ImageTitle: 'peppers.png'
 ImageWidth: 384

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_77544 with NodeURI http://bat6234win64:54825/ and MasterURI http://localhost:59411.
Shutting down ROS master on http://172.30.131.134:59411.

Input Arguments
namespace — ROS parameter namespace
string scalar | character vector

ROS parameter namespace, specified as a string scalar or character vector. All parameter names
starting with this string are listed when calling rosparam("list",namespace).

pname — ROS parameter name
string scalar | character vector

ROS parameter name, specified as a string scalar or character vector.

pval — ROS parameter value or dictionary of values
int32 | logical | double | string scalar | character vector | cell array | structure

ROS parameter value or dictionary of values, specified as a supported data type.

The following ROS data types are supported as values of parameters. For each ROS data type, the
corresponding MATLAB data type is also listed:

• 32-bit integers — int32
• Booleans — logical
• doubles — double
• strings — string scalar, string, or character vector, char
• lists — cell array
• dictionaries — structure

Output Arguments
list — Parameter list
cell array of character vectors

Parameter list, returned as a cell array of character vectors. This is a list of all parameters available
on the ROS master.

 rosparam

1-181

ptree — Parameter tree
ParameterTree object handle

Parameter tree, returned as a ParameterTree object handle. Use this object to reference parameter
information, for example, ptree.AvailableFrames.

pvalOut — ROS parameter value or dictionary of values
int32 | logical | double | character vector | cell array | structure

ROS parameter value, specified as a supported MATLAB data type. When specifying the namespace
input argument, pvalOut is returned as a structure of parameter value under the given namespace.

The following ROS data types are supported as values of parameters. For each ROS data type, the
corresponding MATLAB data type is also listed.

ROS Data Type MATLAB Data Type
32-bit integer int32
Boolean logical
double double
string character vector (char)
list cell array (cell)
dictionary structure (struct)

Limitations
• Unsupported Data Types: Base64-encoded binary data and iso8601 data from ROS are not

supported.
• Simplified Commands: When using the simplified command rosparam set pname pval, the

parameter value is interpreted as:

• logical — If pval is "true" or "false"
• int32 — If pval is an integer, for example, 5
• double — If pval is a fractional number, for example, 1.256
• character vector — If pval is any other value

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

For code generation, only the following ROS data types are supported as values of parameters,

1 Functions

1-182

• 32-bit integer — int32
• Boolean — logical
• double — double
• strings — string scalar, string, or character vector, char

See Also
Functions
get | set | has | search | del

Objects
ParameterTree

 rosparam

1-183

rosReadAllFieldNames
Get all available field names from ROS or ROS 2 point cloud message structure

Syntax
names = rosReadAllFieldNames(pcloud)

Description
names = rosReadAllFieldNames(pcloud) returns all the fields that are stored in the ROS or
ROS 2 'sensor_msgs/PointCloud2' message structure, pcloud, and returns them in names.

Input Arguments
pcloud — Point cloud
'sensor_msgs/PointCloud2' message structure

Point cloud, specified as a message structure for ROS or ROS 2 'sensor_msgs/PointCloud2'
message.

Output Arguments
names — List of field names in PointCloud2 object
cell array of character vectors

List of field names in 'sensor_msgs/PointCloud2' message, returned as a cell array of character
vectors. If no fields exist in the message, fieldname returns an empty cell array.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Usage in MATLAB Function block is not supported.

See Also
rosReadXYZ | rosReadField | rosReadRGB | rosReadCartesian

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

1 Functions

1-184

rosReadBinaryOccupancyGrid
Read binary occupancy grid data from ROS or ROS 2 message structure

Syntax
map = rosReadBinaryOccupancyGrid(msg)
map = rosReadBinaryOccupancyGrid(msg,thresh)
map = rosReadBinaryOccupancyGrid(msg,thresh,val)

Description
map = rosReadBinaryOccupancyGrid(msg) returns a binaryOccupancyGrid object by reading
the data inside a ROS or ROS 2 message structure, msg, which must be a 'nav_msgs/
OccupancyGrid' message. All message data values greater than or equal to the occupancy
threshold are set to occupied, 1, in the map. All other values, including unknown values (-1) are set
to unoccupied, 0, in the map.

map = rosReadBinaryOccupancyGrid(msg,thresh) specifies a threshold, thresh, for occupied
values. All values greater than or equal to the threshold are set to occupied, 1. All other values are
set to unoccupied, 0.

map = rosReadBinaryOccupancyGrid(msg,thresh,val) specifies a value to set for unknown
values (-1). By default, all unknown values are set to unoccupied, 0.

Input Arguments
msg — ROS or ROS 2 occupancy grid message
'nav_msgs/OccupancyGrid' message structure

ROS or ROS 2 'nav_msgs/OccupancyGrid' message, specified as a message structure.

thresh — Threshold for occupied values
50 (default) | scalar

Threshold for occupied values, specified as a scalar. Any value greater than or equal to the threshold
is set to occupied, 1. All other values are set to unoccupied, 0.
Data Types: double

val — Value to replace unknown values
0 (default) | 1

Value to replace unknown values, specified as either 0 or 1. Unknown message values (-1) are set to
the given value.
Data Types: double | logical

Output Arguments
map — Binary occupancy grid
binaryOccupancyMap object handle

 rosReadBinaryOccupancyGrid

1-185

Binary occupancy grid, returned as a binaryOccupancyMap object handle. map contains the
occupancy data from a 'nav_msgs/OccupancyGrid' message converted to binary values. The
object stores a grid of binary values, where 1 indicates an occupied location and 0 indications an
unoccupied location.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rosReadOccupancyGrid | rosReadOccupancyMap3D | rosWriteBinaryOccupancyGrid |
rosWriteOccupancyGrid

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

1 Functions

1-186

rosReadCartesian
Read laser scan ranges in Cartesian coordinates from ROS or ROS 2 message structure

Syntax
cart = rosReadCartesian(scan)
cart = rosReadCartesian(___ ,Name,Value)
[cart,angles] = rosReadCartesian(___)

Description
cart = rosReadCartesian(scan) converts the polar measurements of the ROS or ROS 2 laser
scan message structure, scan, into Cartesian coordinates, cart. This function uses the metadata in
the message, such as angular resolution and opening angle of the laser scanner, to perform the
conversion. Invalid range readings, usually represented as NaN, are ignored in this conversion.

cart = rosReadCartesian(___ ,Name,Value) provides additional options specified by one or
more Name,Value pair arguments. You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN.

[cart,angles] = rosReadCartesian(___) returns the scan angles, angles, that are
associated with each Cartesian coordinate. Angles are measured counterclockwise around the
positive z-axis, with the zero angle along the x-axis. The angles is returned in radians and wrapped
to the [–pi, pi] interval.

Input Arguments
scan — Laser scan message
LaserScan structure

ROS or ROS 2 laser scan message of type 'sensor_msgs/LaserScan', specified as a message
structure.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RangeLimits',[0.05 2] sets the range limits for the scan in meters

RangeLimits — Minimum and maximum range for scan in meters
[scan.RangeMin scan.RangeMax] (default) | 2-element [min max] vector

Minimum and maximum range for a scan in meters, specified as a 2-element [min max] vector. All
ranges smaller than min or larger than max are ignored during the conversion to Cartesian
coordinates.

 rosReadCartesian

1-187

Output Arguments
cart — Cartesian coordinates of laser scan
n–by–2 matrix in meters

Cartesian coordinates of laser scan, returned as an n-by-2 matrix in meters.

angles — Scan angles for laser scan data
n–by–1 matrix in radians

Scan angles for laser scan data, returned as an n-by-1 matrix in radians. Angles are measured
counterclockwise around the positive z-axis, with the zero angle along the x-axis. The angles is
returned in radians and wrapped to the [–pi, pi] interval.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rosReadScanAngles | rosReadXYZ | rosPlot

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

1 Functions

1-188

rosReadField
Read point cloud data from ROS or ROS 2 message structure based on field name

Syntax
fielddata = rosReadField(pcloud,fieldname)
fielddata = rosReadField(pcloud,fieldname,"PreserveStructureOnRead",true)

Description
fielddata = rosReadField(pcloud,fieldname) reads the point field from the ROS or ROS 2
'sensor_msgs/PointCloud2' message structure, pcloud, specified by fieldname and returns it
in fielddata.

fielddata = rosReadField(pcloud,fieldname,"PreserveStructureOnRead",true)
preserves the organizational structure of the point cloud field data returned in the fielddata
output. For more information, see “Preserving Point Cloud Structure” on page 1-189.

Input Arguments
pcloud — Point cloud
'sensor_msgs/PointCloud2' message structure

Point cloud, specified as a message structure for ROS or ROS 2 'sensor_msgs/PointCloud2'
message.

fieldname — Field name of point cloud data
string scalar | character vector

Field name of point cloud data, specified as a string scalar or character vector. This string must
match the field name exactly. If fieldname does not exist, the function displays an error.

Output Arguments
fielddata — List of field values from point cloud
matrix

List of field values from point cloud, returned as a matrix. Each row of the matrix is a point cloud
reading, where n is the number of points and c is the number of values for each point.

If the PreserveStructureOnRead name-value pair argument is set to true, the points are returned
as an h-by-w-by-c matrix.

Preserving Point Cloud Structure
Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image styles usually
come from depth sensors or stereo cameras. The input PointCloud2 object contains a
PreserveStructureOnRead property that is either true or false (default). Suppose you set the
property to true.

 rosReadField

1-189

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (rosReadXYZ, rosReadRGB, or rosReadField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output matrices are
of size m-by-n-by-d, where m is the height, n is the width, and d is the number of return values for
each point. Otherwise, all points are returned as a x-by-d list. This structure can be preserved only if
the point cloud is organized.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Usage in MATLAB Function block is not supported.

See Also
PointCloud2 | rosReadAllFieldNames

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

1 Functions

1-190

rosReadImage
Convert ROS or ROS 2 image data into MATLAB image

Syntax
img = rosReadImage(msg)
msgOut = rosReadImage(___ ,"Encoding",encodingParam)
[img,alpha] = rosReadImage(___)

Description
img = rosReadImage(msg) converts the raw image data in the ROS or ROS 2 message structure,
msg, into an image matrix, img. You can call rosReadImage using either 'sensor_msgs/Image' or
'sensor_msgs/CompressedImage' messages.

ROS or ROS 2 image message data is stored in a format that is not compatible with further image
processing in MATLAB. Based on the specified encoding, this function converts the data into an
appropriate MATLAB image and returns it in img.

msgOut = rosReadImage(___ ,"Encoding",encodingParam) specifies the encoding of the
image message as a name-value argument using any of the previous input arguments. If the
Encoding field of the message is not set, use this syntax to set the field.

[img,alpha] = rosReadImage(___) returns the alpha channel of the image in alpha. If the
image does not have an alpha channel, then alpha is empty.

Input Arguments
msg — ROS or ROS 2 image message
'sensor_msgs/Image' message structure | 'sensor_msgs/CompressedImage' message
structure

ROS or ROS 2 'sensor_msgs/Image' or 'sensor_msgs/CompressedImage' message, specified
as a message structure.

encodingParam — Encoding of image message
"rgb8" | "rgba8" | "rgb16" | string scalar

Encoding of image message, specified as a string scalar. Using this input argument overwrites the
Encoding field of the input msg. For more information, see “Supported Image Encodings” on page 1-
192.

Output Arguments
img — Image
grayscale image matrix | RGB image matrix | m-by-n-by-3 array

Image, returned as a matrix representing a grayscale or RGB image or as an m-by-n-by-3 array,
depending on the sensor image.

 rosReadImage

1-191

alpha — Alpha channel
uint8 grayscale image

Alpha channel, returned as a uint8 grayscale image. If no alpha channel exists, alpha is empty.

Note For CompressedImage messages, you cannot output an Alpha channel.

Supported Image Encodings
ROS or ROS 2 image messages can have different encodings. The encodings supported for images are
different for 'sensor_msgs/Image' and 'sensor_msgs/CompressedImage' message types.
Fewer compressed images are supported. The following encodings for raw images of size M-by-N are
supported using the 'sensor_msgs/Image' message type ('sensor_msgs/CompressedImage'
support is in bold):

• rgb8, rgba8, bgr8, bgra8: img is an rgb image of size M-by-N-by-3. The alpha channel is
returned in alpha. Each value in the outputs is represented as a uint8.

• rgb16, rgba16, bgr16, and bgra16: img is an RGB image of size M-by-N-by-3. The alpha
channel is returned in alpha. Each value in the output is represented as a uint16.

• mono8 images are returned as grayscale images of size M-by-N-by-1. Each pixel value is
represented as a uint8.

• mono16 images are returned as grayscale images of size M-by-N-by-1. Each pixel value is
represented as a uint16.

• 32fcX images are returned as floating-point images of size M-by-N-by-D, where D is 1, 2, 3, or 4.
Each pixel value is represented as a single.

• 64fcX images are returned as floating-point images of size M-by-N-by-D, where D is 1, 2, 3, or 4.
Each pixel value is represented as a double.

• 8ucX images are returned as matrices of size M-by-N-by-D, where D is 1, 2, 3, or 4. Each pixel
value is represented as a uint8.

• 8scX images are returned as matrices of size M-by-N-by-D, where D is 1, 2, 3, or 4. Each pixel
value is represented as a int8.

• 16ucX images are returned as matrices of size M-by-N-by-D, where D is 1, 2, 3, or 4. Each pixel
value is represented as a int16.

• 16scX images are returned as matrices of size M-by-N-by-D, where D is 1, 2, 3, or 4. Each pixel
value is represented as a int16.

• 32scX images are returned as matrices of size M-by-N-by-D, where D is 1, 2, 3, or 4. Each pixel
value is represented as a int32.

• bayer_X images are returned as either Bayer matrices of size M-by-N-by-1, or as a converted
image of size M-by-N-by-3 (Image Processing Toolbox is required).

The following encoding for raw images of size M-by-N is supported using the 'sensor_msgs/
CompressedImage' message type:

• rgb8, rgba8, bgr8, and bgra8: img is an rgb image of size M-by-N-by-3. The alpha channel
is returned in alpha. Each output value is represented as a uint8.

1 Functions

1-192

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Not supported for CompressedImage messages.
• Specify the "Encoding",encodParam name-value argument when generating code.

See Also
rosWriteImage | rosReadRGB

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

 rosReadImage

1-193

rosReadLidarScan
Display lidar scan or point cloud from ROS or ROS 2 message structure

Syntax
scans = rosReadLidarScan(scanMsg)

Description
scans = rosReadLidarScan(scanMsg) creates a lidarScan object from a ROS or ROS 2
sensor_msgs/LaserScan message structure.

Input Arguments
scanMsg — ROS or ROS 2 laser scan message
sensor_msgs/LaserScan message structure

ROS or ROS 2 laser scan message of type sensor_msgs/LaserScan, specified as a message
structure.

Outputs
scans — Lidar scan readings
lidarScan object

Lidar scan readings, returned as a lidarScan object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rosReadCartesian

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

1 Functions

1-194

rosReadOccupancyGrid
Read occupancy grid data from ROS or ROS 2 message structure

Syntax
map = rosReadOccupancyGrid(msg)

Description
map = rosReadOccupancyGrid(msg) returns an occupancyMap object by reading the data inside
a ROS or ROS 2 message structure, msg, which must be a 'nav_msgs/OccupancyGrid' message.
All message data values are converted to probabilities from 0 to 1. The unknown values (-1) in the
message are set as 0.5 in the map.

Input Arguments
msg — ROS or ROS 2 occupancy grid message
'nav_msgs/OccupancyGrid' message structure

ROS or ROS 2 'nav_msgs/OccupancyGrid' message, specified as a message structure.

Output Arguments
map — Occupancy map
occupancyMap object handle

Occupancy map, returned as an occupancyMap object handle.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rosReadBinaryOccupancyGrid | rosReadOccupancyMap3D | rosWriteBinaryOccupancyGrid
| rosWriteOccupancyGrid

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

 rosReadOccupancyGrid

1-195

rosReadOccupancyMap3D
Read 3-D map from ROS or ROS 2 Octomap message structure

Syntax
map = rosReadOccupancyMap3D(msg)

Description
map = rosReadOccupancyMap3D(msg) reads the data inside a ROS or ROS 2 'octomap_msgs/
Octomap' message to return an occupancyMap3D object. All message data values are converted to
probabilities from 0 to 1.

Input Arguments
msg — ROS or ROS 2 Octomap message
'octomap_msgs/Octomap' message structure

ROS or ROS 2 'octomap_msgs/Octomap' message, specified as a message structure. Get this
message by subscribing to an 'octomap_msgs/Octomap' topic using rossubscriber or
ros2subscriber on a live ROS or ROS 2 network, respectively. You can also create your own
message using rosmessage or ros2message.

Output Arguments
map — 3-D occupancy map
occupancyMap3D object handle

3-D occupancy map, returned as an occupancyMap3D object handle.

Version History
Introduced in R2021a

See Also
occupancyMap3D | rosmessage | rossubscriber | rosReadOccupancyGrid |
rosReadOccupancyMap3D | rosWriteOccupancyGrid

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

1 Functions

1-196

rosRegisterMessages
Register ROS custom messages with MATLAB

Syntax
rosRegisterMessages(genDir)

Description
rosRegisterMessages(genDir) registers ROS custom messages with MATLAB. Use this function
to register the custom messages generated on another computer running on the same platform and
same version of MATLAB.

Note The rosRegisterMessages function allows sharing of the custom messages on different
machines running on the same platform only. Use this rosgenmsg function on the new platform if the
machines are running on different platforms.

Examples

Register ROS Custom Messages to MATLAB

In this example, you create ROS custom messages in MATLAB® and share them on another machine
running on the same platform and using the same version of MATLAB®. You must have a ROS
package that contains the required msg file, as this figure shows.

Open a new MATLAB session and create a custom message package folder in a local folder. Specify a
short folder path when you generate custom messages on a Windows machine to avoid limitations on
the number of characters in the folder path. For example,

genDir = fullfile('C:/Work/rosCustomMessages')

genDir = fullfile(pwd,'rosCustomMessages');
packagePath = fullfile(genDir,'simple_msgs');
mkdir(packagePath)

Create a folder named msg inside the custom message package folder.

mkdir(packagePath,'msg')

 rosRegisterMessages

1-197

Create a file named .msg inside the msg folder.

messageDefinition = {'int64 num'};

fileID = fopen(fullfile(packagePath,'msg', ...
 'Num.msg'),'w');
fprintf(fileID,'%s\n',messageDefinition{:});
fclose(fileID);

Create a folder named srv inside the custom message package folder.

mkdir(packagePath,'srv')

Create a file named .srv inside the srv folder.

serviceDefinition = {'int64 a'
 'int64 b'
 '---'
 'int64 sum'};

fileID = fopen(fullfile(packagePath,'srv', ...
 'AddTwoInts.srv'),'w');
fprintf(fileID,'%s\n',serviceDefinition{:});
fclose(fileID);

Create a folder named action inside the custom message package folder.

mkdir(packagePath,'action')

Create a file named .action inside the action folder.

actionDefinition = {'int64 goal'
 '---'
 'int64 result'
 '---'
 'int64 feedback'};

fileID = fopen(fullfile(packagePath,'action', ...
 'Test.action'),'w');
fprintf(fileID,'%s\n',actionDefinition{:});
fclose(fileID);

Generate the custom messages from the ROS definitions in .msg, .srv, and .action files as a
shareable ZIP archive.

rosgenmsg(genDir,CreateShareableFile=true)

Identifying message files in folder 'C:/Work/rosCustomMessages'.Done.
Validating message files in folder 'C:/Work/rosCustomMessages'.Done.
[1/1] Generating MATLAB interfaces for custom message packages... Done.
Running catkin build in folder 'C:/Work/rosCustomMessages/matlab_msg_gen_ros1/win64'.
Build in progress. This may take several minutes...
Build succeeded.build log
Generating zip file in the folder 'C:/Work/rosCustomMessages'.Done.

To use the custom messages, follow these steps:

1. Add the custom message folder to the MATLAB path by executing:

1 Functions

1-198

addpath('C:\Work\rosCustomMessages\matlab_msg_gen_ros1\win64\install\m')
savepath

2. Refresh all message class definitions, which requires clearing the workspace, by executing:

clear classes
rehash toolboxcache

3. Verify that you can use the custom messages.
 Enter "rosmsg list" and ensure that the output contains the generated
 custom message types.

Copy the generated custom messages in the ZIP archive to the target computer and register it using
the rosRegisterMessages function.

rosRegisterMessages(genDir)

To use the custom messages, follow these steps:

1. Add the custom message folder to the MATLAB path by executing:

addpath('C:\Work\rosCustomMessages\install\m')
savepath

2. Refresh all message class definitions, which requires clearing the workspace, by executing:

clear classes
rehash toolboxcache

3. Verify that you can use the custom messages.
 Enter "rosmsg list" and ensure that the output contains the generated
 custom message types.

Run rosmsg list on the target computer to view the custom messages for using in the workflow.

 rosRegisterMessages

1-199

Input Arguments
genDir — Path to the folder that contains matlab_msg_gen_ros1.zip file
string scalar | character vector

Path to the folder that contains matlab_msg_gen_ros1.zip file, specified as a string scalar or a
character vector. These folders contain a folder named /msg with .msg files for message definitions,
a folder named /srv with .srv files for service definitions, and a folder named /action
with .action files for action definitions.
Data Types: char | string

Version History
Introduced in R2022b

See Also
rosgenmsg

1 Functions

1-200

ros2RegisterMessages
Register ROS 2 custom messages with MATLAB

Syntax
ros2RegisterMessages(genDir)

Description
ros2RegisterMessages(genDir) registers custom messages with MATLAB. Use this function to
register the custom messages generated on another computer running on the same platform and
same version of MATLAB.

Note The ros2RegisterMessages function allows sharing of the custom messages on different
machines running on the same platform only. Use the ros2genmsg function on the new platform if
the machines are running on different platforms.

Examples

Register ROS 2 Custom Messages to MATLAB

In this example, you create ROS 2 custom messages in MATLAB® and share them on another
machine running on the same platform and same version of MATLAB®. You must have a ROS 2
package that contains the required msg file, as this figure shows.

Open a new MATLAB session and create a custom message package folder in a local folder. Specify a
short folder path when you generate custom messages on a Windows machine to avoid limitations on
the number of characters in the folder path. For example,

genDir = fullfile('C:/Work/ros2CustomMessages').

genDir = fullfile(pwd,'ros2CustomMessages');
packagePath = fullfile(genDir,'simple_msgs');
mkdir(packagePath)

Create a folder named msg inside the custom message package folder.

mkdir(packagePath,'msg')

Create a file named .msg inside the msg folder.

messageDefinition = {'int64 num'};

 ros2RegisterMessages

1-201

fileID = fopen(fullfile(packagePath,'msg', ...
 'Num.msg'),'w');
fprintf(fileID,'%s\n',messageDefinition{:});
fclose(fileID);

Create a folder named srv inside the custom message package folder.

mkdir(packagePath,'srv')

Create a file named .srv inside the srv folder.

serviceDefinition = {'int64 a'
 'int64 b'
 '---'
 'int64 sum'};

fileID = fopen(fullfile(packagePath,'srv', ...
 'AddTwoInts.srv'),'w');
fprintf(fileID,'%s\n',serviceDefinition{:});
fclose(fileID);

Generate the custom messages from the ROS 2 definitions in .msg and .srv files as a shareable
ZIP archive.

ros2genmsg(genDir,CreateShareableFile=true)

Identifying message files in folder 'C:/Work/ros2CustomMessages'.Done.
Validating message files in folder 'C:/Work/ros2CustomMessages'.Done.
[1/1] Generating MATLAB interfaces for custom message packages... Done.
Running colcon build in folder 'C:/Work/ros2CustomMessages/matlab_msg_gen/win64'.
Build in progress. This may take several minutes...
Build succeeded.build log
Generating zip file in the folder 'C:/Work/ros2CustomMessages'.Done.

Copy the generated custom messages in the ZIP archive to the target computer and register it using
the ros2RegisterMessages function.

ros2RegisterMessages(genDir)

Run ros2 msg list on the target computer to view the custom messages for using in the workflow.

1 Functions

1-202

Input Arguments
genDir — Path to the folder that contains matlab_msg_gen.zip file
string scalar | character vector

Path to the folder that contains matlab_msg_gen.zip file, specified as a string scalar or a character
vector. These folders contain a folder named /msg with .msg files for message definitions and a
folder named /srv with .srv files for service definitions.
Data Types: char | string

Version History
Introduced in R2022b

See Also
ros2genmsg

 ros2RegisterMessages

1-203

rosPlot
Display lidar scan or point cloud from ROS or ROS 2 message structures

Syntax
rosPlot(scanMsg)
rosPlot(ptcloudMsg)
rosPlot(___ ,Name,Value)
linehandle = plot(___)

Description
rosPlot(scanMsg) plots the laser scan readings specified in the input ROS or ROS 2
sensor_msgs/LaserScan message structure. Axes are automatically scaled to the maximum range
of the sensor.

rosPlot(ptcloudMsg) plots the point cloud readings specified in the input sensor_msgs/
PointCloud2 message structure.

rosPlot(___ ,Name,Value) provides additional options specified by one or more Name,Value
pair arguments.

linehandle = plot(___) returns a column vector of line series handles, using any of the
arguments from previous syntaxes. Use linehandle to modify properties of the line series after it is
created.

When plotting ROS laser scan messages, MATLAB follows the standard ROS convention for axis
orientation. This convention states that positive x is forward, positive y is left, and positive z is
up. For more information, see Axis Orientation on the ROS Wiki.

Input Arguments
scanMsg — Laser scan message
LaserScan message structure

ROS or ROS 2 message of type sensor_msgs/LaserScan, specified as a message structure.

ptcloudMsg — Point cloud message
message structure

ROS or ROS 2 message of type sensor_msgs/PointCloud2, specified as a message structure.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "MaximumRange",5

1 Functions

1-204

https://www.ros.org/reps/rep-0103.html#axis-orientation

Parent — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of "Parent" and an axes object in
which the laser scan is drawn. By default, the laser scan is plotted in the currently active axes.

MaximumRange — Range of laser scan
scan.RangeMax (default) | scalar

Range of laser scan, specified as the comma-separated pair consisting of "MaximumRange" and a
scalar. When you specify this name-value pair argument, the minimum and maximum x-axis and the
maximum y-axis limits are set based on a specified value. The minimum y-axis limit is automatically
determined by the opening angle of the laser scanner.

This name-value pair works only when you input scanMsg as the laser scan.

Outputs
linehandle — One or more chart line objects
scalar | vector

One or more chart line objects, returned as a scalar or a vector. These are unique identifiers, which
you can use to query and modify properties of a specific chart line.

Version History
Introduced in R2021a

See Also
rosReadCartesian

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

 rosPlot

1-205

rosReadQuaternion
Create MATLAB quaternion object from ROS or ROS 2 message structure

Syntax
q = rosReadQuaternion(quatMsg)

Description
q = rosReadQuaternion(quatMsg) creates a quaternion object from a ROS or ROS 2
geometry_msgs/Quaternion message structure.

Input Arguments
quatMsg — ROS or ROS 2 quaternion message
geometry_msgs/Quaternion message structure

ROS or ROS 2 message of type geometry_msgs/Quaternion, specified as a message structure.

Outputs
q — Quaternion
quaternion object

Quaternion, returned as a quaternion object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rosReadCartesian | quaternion

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

1 Functions

1-206

rosReadRGB
Extract RGB color values from ROS or ROS 2 point cloud message structure

Syntax
rgb = rosReadRGB(pcloud)
rgb = rosReadRGB(pcloud,"PreserveStructureOnRead",true)

Description
rgb = rosReadRGB(pcloud) extracts the [r g b] values from all points in the ROS or ROS 2
'sensor_msgs/PointCloud2' message structure, pcloud, and returns them as an n-by-3 matrix of
n 3-D point coordinates.

rgb = rosReadRGB(pcloud,"PreserveStructureOnRead",true) preserves the organizational
structure of the point cloud returned in the rgb output. For more information, see “Preserving Point
Cloud Structure” on page 1-207.

Input Arguments
pcloud — Point cloud
'sensor_msgs/PointCloud2' message structure

Point cloud, specified as a message structure for ROS or ROS 2 'sensor_msgs/PointCloud2'
message.

Output Arguments
rgb — List of RGB values from point cloud
matrix

List of RGB values from point cloud, returned as a matrix. By default, this is a n-by-3 matrix.

If the PreserveStructureOnRead name-value pair argument is set to true, the points are returned
as an h-by-w-by-3 matrix.

Preserving Point Cloud Structure
Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image styles usually
come from depth sensors or stereo cameras. The input PointCloud2 object contains a
PreserveStructureOnRead property that is either true or false (default). Suppose you set the
property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (rosReadXYZ, rosReadRGB, or rosReadField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output matrices are
of size m-by-n-by-d, where m is the height, n is the width, and d is the number of return values for

 rosReadRGB

1-207

each point. Otherwise, all points are returned as a x-by-d list. This structure can be preserved only if
the point cloud is organized.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Usage in MATLAB Function block is not supported.

See Also
PointCloud2 | rosReadXYZ

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

1 Functions

1-208

rosReadScanAngles
Return scan angles from ROS or ROS 2 message structure

Syntax
angles = rosReadScanAngles(scan)

Description
angles = rosReadScanAngles(scan) calculates the scan angles, angles, corresponding to the
range readings in the ROS or ROS 2 laser scan message structure, scan. Angles are measured
counterclockwise around the positive z-axis, with the zero angle along the x-axis. The angles is
returned in radians and wrapped to the [–pi, pi] interval.

Input Arguments
scan — ROS or ROS 2 laser scan message
'sensor_msgs/LaserScan' message structure

ROS or ROS 2 laser scan message of type 'sensor_msgs/LaserScan', specified as a message
structure.

Output Arguments
angles — Scan angles for laser scan data
n–by–1 matrix in radians

Scan angles for laser scan data, returned as an n-by-1 matrix in radians. Angles are measured
counter-clockwise around the positive z-axis, with the zero angle along the x-axis. The angles is
returned in radians and wrapped to the [–pi, pi] interval.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rosReadCartesian | rosReadXYZ | rosPlot

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

 rosReadScanAngles

1-209

rosReadXYZ
Extract XYZ coordinates from ROS or ROS 2 point cloud message structure

Syntax
xyz = rosReadXYZ(pcloud)
xyz = rosReadXYZ(pcloud,"PreserveStructureOnRead",true)

Description
xyz = rosReadXYZ(pcloud) extracts the [x y z] coordinates from all points in the ROS or ROS
2 'sensor_msgs/PointCloud2' message structure, pcloud, and returns them as an n-by-3 matrix
of n 3-D point coordinates. If the point cloud does not contain the x, y, and z fields, this function
returns an error. Points that contain NaN are preserved in the output.

xyz = rosReadXYZ(pcloud,"PreserveStructureOnRead",true) preserves the organizational
structure of the point cloud returned in the xyz output. For more information, see “Preserving Point
Cloud Structure” on page 1-210.

Input Arguments
pcloud — Point cloud
PointCloud2 message structure

Point cloud, specified as a message structure for ROS or ROS 2 'sensor_msgs/PointCloud2'
message.

Output Arguments
xyz — List of XYZ values from point cloud
n-by-3 matrix | h-by-w-by-3 matrix

List of XYZ values from point cloud, returned as a matrix. By default, this is a n-by-3 matrix.

If the PreserveStructureOnRead name-value pair argument is set to true, the points are returned
as an h-by-w-by-3 matrix.

Preserving Point Cloud Structure
Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image styles usually
come from depth sensors or stereo cameras. The input PointCloud2 object contains a
PreserveStructureOnRead property that is either true or false (default). Suppose you set the
property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (rosReadXYZ, rosReadRGB, or rosReadField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output matrices are
of size m-by-n-by-d, where m is the height, n is the width, and d is the number of return values for

1 Functions

1-210

each point. Otherwise, all points are returned as a x-by-d list. This structure can be preserved only if
the point cloud is organized.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Only single data type is supported for input sensor_msgs/PointCloud2 messages.
• Usage in MATLAB Function block is not supported.

See Also
rosReadRGB | rosReadCartesian | rosReadAllFieldNames

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

 rosReadXYZ

1-211

rosservice
Retrieve information about services in ROS network

Syntax
rosservice list
rosservice info svcname
rosservice type svcname
rosservice uri svcname

svclist = rosservice("list")
svcinfo = rosservice("info",svcname)
svctype = rosservice("type",svcname)
svcuri = rosservice("uri",svcname)

Description
rosservice list returns a list of service names for all of the active service servers on the ROS
network.

rosservice info svcname returns information about the specified service, svcname.

rosservice type svcname returns the service type.

rosservice uri svcname returns the URI of the service.

svclist = rosservice("list") returns a list of service names for all of the active service
servers on the ROS network. svclist contains a cell array of service names.

svcinfo = rosservice("info",svcname) returns a structure of information, svcinfo, about
the service, svcname.

svctype = rosservice("type",svcname) returns the service type of the service as a character
vector.

svcuri = rosservice("uri",svcname) returns the URI of the service as a character vector.

Examples

View List of ROS Services

Connect to the ROS network. Specify the IP address of your specific network.

rosinit('192.168.17.128')

Initializing global node /matlab_global_node_23375 with NodeURI http://192.168.17.1:64875/

List the services available on the ROS master.

rosservice list

1 Functions

1-212

/camera/rgb/image_raw/compressed/set_parameters
/camera/set_camera_info
/camera/set_parameters
/depthimage_to_laserscan/set_parameters
/gazebo/apply_body_wrench
/gazebo/apply_joint_effort
/gazebo/clear_body_wrenches
/gazebo/clear_joint_forces
/gazebo/delete_model
/gazebo/get_joint_properties
/gazebo/get_link_properties
/gazebo/get_link_state
/gazebo/get_loggers
/gazebo/get_model_properties
/gazebo/get_model_state
/gazebo/get_physics_properties
/gazebo/get_world_properties
/gazebo/pause_physics
/gazebo/reset_simulation
/gazebo/reset_world
/gazebo/set_joint_properties
/gazebo/set_link_properties
/gazebo/set_link_state
/gazebo/set_logger_level
/gazebo/set_model_configuration
/gazebo/set_model_state
/gazebo/set_parameters
/gazebo/set_physics_properties
/gazebo/spawn_gazebo_model
/gazebo/spawn_sdf_model
/gazebo/spawn_urdf_model
/gazebo/unpause_physics
/laserscan_nodelet_manager/get_loggers
/laserscan_nodelet_manager/list
/laserscan_nodelet_manager/load_nodelet
/laserscan_nodelet_manager/set_logger_level
/laserscan_nodelet_manager/unload_nodelet
/mobile_base_nodelet_manager/get_loggers
/mobile_base_nodelet_manager/list
/mobile_base_nodelet_manager/load_nodelet
/mobile_base_nodelet_manager/set_logger_level
/mobile_base_nodelet_manager/unload_nodelet
/robot_state_publisher/get_loggers
/robot_state_publisher/set_logger_level
/rosout/get_loggers
/rosout/set_logger_level

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_23375 with NodeURI http://192.168.17.1:64875/

Get Information, Service Type, and URI for ROS Service

Connect to the ROS network. Specify the IP address of your specific network.

 rosservice

1-213

rosinit('192.168.17.128')

Initializing global node /matlab_global_node_09263 with NodeURI http://192.168.17.1:65083/

Get information on the |gazebo/pause_physics| service.

svcinfo = rosservice('info','gazebo/pause_physics')

svcinfo = struct with fields:
 Node: '/gazebo'
 URI: 'rosrpc://192.168.17.128:52059'
 Type: 'std_srvs/Empty'
 Args: {}

Get the service type.

svctype = rosservice('type','gazebo/pause_physics')

svctype =
'std_srvs/Empty'

Get the service URI.

svcuri = rosservice('uri','gazebo/pause_physics')

svcuri =
'rosrpc://192.168.17.128:52059'

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_09263 with NodeURI http://192.168.17.1:65083/

Input Arguments
svcname — Name of service
string scalar | character vector

Name of service, specified as a string scalar or character vector. The service name must match its
name in the ROS network.

Output Arguments
svcinfo — Information about a ROS service
character vector

Information about a ROS service, returned as a character vector.

svclist — List of available ROS services
cell array of character vectors

List of available ROS services, returned as a cell array of character vectors.

svctype — Type of ROS service
character vector

1 Functions

1-214

Type of ROS service, returned as a character vector.

svcuri — URI for accessing service
character vector

URI for accessing service, returned as a character vector.

Version History
Introduced in R2019b

See Also
rosinit | rosparam

 rosservice

1-215

rosShowDetails
Display all ROS message contents

Syntax
details = rosShowDetails(msg)

Description
details = rosShowDetails(msg) gets all data contents of the ROS message structure msg. The
details are stored in details or if not specified, are displayed on the command line.

Input Arguments
msg — ROS message
structure

ROS message, specified as a ROS message structure.

Output Arguments
details — Details of ROS message
character vector

Details of a ROS message, returned as a character vector.

Version History
Introduced in R2021a

See Also
rosmessage

1 Functions

1-216

rosshutdown
Shut down ROS system

Syntax
rosshutdown

Description
rosshutdown shuts down the global node and, if it is running, the ROS master. When you finish
working with the ROS network, use rosshutdown to shut down the global ROS entities created by
rosinit. If the global node and ROS master are not running, this function has no effect.

Note After calling rosshutdown, any ROS entities (objects) that depend on the global node like
subscribers created with rossubscriber, are deleted and become unstable.

Prior to calling rosshutdown, call clear on these objects for a clean removal of ROS entities.

Examples

Start ROS Core and Global Node

rosinit

Launching ROS Core...
...Done in 3.2713 seconds.
Initializing ROS master on http://172.30.131.134:59065.
Initializing global node /matlab_global_node_57403 with NodeURI http://bat6234win64:63542/ and MasterURI http://localhost:59065.

When you are finished, shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_57403 with NodeURI http://bat6234win64:63542/ and MasterURI http://localhost:59065.
Shutting down ROS master on http://172.30.131.134:59065.

Version History
Introduced in R2019b

See Also
rosinit

 rosshutdown

1-217

rostopic
Retrieve information about ROS topics

Syntax
rostopic list
rostopic echo topicname
rostopic info topicname
rostopic type topicname

topiclist = rostopic("list")
msg = rostopic("echo", topicname)
topicinfo = rostopic("info", topicname)
msgtype = rostopic("type", topicname)

Description
rostopic list returns a list of ROS topics from the ROS master.

rostopic echo topicname returns the messages being sent from the ROS master about a specific
topic, topicname. To stop returning messages, press Ctrl+C.

rostopic info topicname returns the message type, publishers, and subscribers for a specific
topic, topicname.

rostopic type topicname returns the message type for a specific topic.

topiclist = rostopic("list") returns a cell array containing the ROS topics from the ROS
master. If you do not define the output argument, the list is returned in the MATLAB Command
Window.

msg = rostopic("echo", topicname) returns the messages being sent from the ROS master
about a specific topic, topicname. To stop returning messages, press Ctrl+C. If the output argument
is defined, then rostopic returns the first message that arrives on that topic.

topicinfo = rostopic("info", topicname) returns a structure containing the message type,
publishers, and subscribers for a specific topic, topicname.

msgtype = rostopic("type", topicname) returns a character vector containing the message
type for the specified topic, topicname.

Examples

Get List of ROS Topics

Connect to the ROS network. Specify the IP address of the ROS device.

rosinit('192.168.17.129',11311)

Initializing global node /matlab_global_node_01393 with NodeURI http://192.168.17.1:49865/

1 Functions

1-218

List the ROS topic available on the ROS master.

rostopic list

/camera/depth/camera_info
/camera/depth/image_raw
/camera/depth/points
/camera/parameter_descriptions
/camera/parameter_updates
/camera/rgb/camera_info
/camera/rgb/image_raw
/camera/rgb/image_raw/compressed
/camera/rgb/image_raw/compressed/parameter_descriptions
/camera/rgb/image_raw/compressed/parameter_updates
/clock
/cmd_vel_mux/active
/cmd_vel_mux/input/navi
/cmd_vel_mux/input/safety_controller
/cmd_vel_mux/input/teleop
/cmd_vel_mux/parameter_descriptions
/cmd_vel_mux/parameter_updates
/depthimage_to_laserscan/parameter_descriptions
/depthimage_to_laserscan/parameter_updates
/fibonacci/cancel
/fibonacci/feedback
/fibonacci/goal
/fibonacci/result
/fibonacci/status
/gazebo/link_states
/gazebo/model_states
/gazebo/parameter_descriptions
/gazebo/parameter_updates
/gazebo/set_link_state
/gazebo/set_model_state
/joint_states
/laserscan_nodelet_manager/bond
/mobile_base/commands/motor_power
/mobile_base/commands/reset_odometry
/mobile_base/commands/velocity
/mobile_base/events/bumper
/mobile_base/events/cliff
/mobile_base/sensors/bumper_pointcloud
/mobile_base/sensors/core
/mobile_base/sensors/imu_data
/mobile_base_nodelet_manager/bond
/odom
/rosout
/rosout_agg
/scan
/tf
/tf_static

Get ROS Topic Info

Connect to ROS network. Specify the IP address of the ROS device.

 rostopic

1-219

rosinit('192.168.17.129',11311)

Initializing global node /matlab_global_node_29625 with NodeURI http://192.168.17.1:50079/

Show information on a specific ROS topic.

rostopic info camera/depth/points

Type: sensor_msgs/PointCloud2

Publishers:
* /gazebo (http://192.168.17.129:33044/)

Subscribers:

Get ROS Topic Message Type

Connect to the ROS network. Specify the IP address of the ROS device.

rosinit('192.168.17.129',11311)

Initializing global node /matlab_global_node_19218 with NodeURI http://192.168.17.1:55966/

Get the message type for a specific topic. Create a message from the message type to publish to the
topic.

msgtype = rostopic('type','camera/depth/points');
msg = rosmessage(msgtype);

Input Arguments
topicname — ROS topic name
string scalar | character vector

ROS topic name, specified as a string scalar or character vector. The topic name must match one of
the topics that rostopic("list") outputs.

Output Arguments
topiclist — List of topics from the ROS master
cell array of character vectors

List of topics from the ROS master, returned as a cell array of character vectors.

msg — ROS message for a given topic
object handle

ROS message for a given topic, returned as an object handle.

topicinfo — Information about a given ROS topic
structure

1 Functions

1-220

Information about a ROS topic, returned as a structure. The topicinfo syntax includes the message
type, publishers, and subscribers associated with that topic.

msgtype — Message type for a ROS topic
character vector

Message type for a ROS topic, returned as a character vector.

Version History
Introduced in R2019b

 rostopic

1-221

rostype
Access available ROS message types

Syntax
rostype

Description
rostype creates a blank message of a certain type by browsing the list of available message types.
You can use tab completion and do not have to rely on typing error-free message type character
vectors. By typing rostype.partialname, and pressing Tab, a list of matching message types
appears in a list. By setting the message type equal to a variable, you can create a character vector of
that message type. Alternatively, you can create the message by supplying the message type directly
into rosmessage as an input argument.

Examples

Create ROS Message Type and ROS Message

Create Message Type String

t = rostype.std_msgs_String

t =
'std_msgs/String'

Create ROS Message from ROS Type

msg = rosmessage(rostype.std_msgs_String)

msg =
 ROS String message with properties:

 MessageType: 'std_msgs/String'
 Data: ''

 Use showdetails to show the contents of the message

Version History
Introduced in R2019b

See Also
rosmessage | rostopic

Topics
“Built-In Message Support”

1 Functions

1-222

“Work with Basic ROS Messages”

 rostype

1-223

rosWriteBinaryOccupancyGrid
Write values from binary occupancy grid to ROS or ROS 2 message structure

Syntax
msgOut = rosWriteBinaryOccupancyGrid(msg,map)

Description
msgOut = rosWriteBinaryOccupancyGrid(msg,map) writes occupancy values from the
occupancy grid map and other information from the ROS or ROS 2 message structure msg to an
output message msgOut.

Input Arguments
msg — ROS or ROS 2 occupancy grid message
'nav_msgs/OccupancyGrid' message structure

ROS or ROS 2 'nav_msgs/OccupancyGrid' message, specified as a message structure.

map — Binary occupancy grid
binaryOccupancyMap object handle

Binary occupancy grid, specified as a binaryOccupancyMap object handle. The object stores a grid
of binary values, where 1 indicates an occupied location and 0 indications an unoccupied location.

Outputs
msgOut — ROS or ROS 2 occupancy grid message
'nav_msgs/OccupancyGrid' message structure

ROS or ROS 2 'nav_msgs/OccupancyGrid' message, specified as a message structure.

You can use the same variable for the input and output argument to directly assign to the existing
message.

map = occupancyMap(rand(10));
msg = rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct");
msg = rosWriteBinaryOccupancyGrid(msg,map)

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-224

Usage notes and limitations:

• Usage in MATLAB Function block is not supported.

See Also
Functions
rosReadBinaryOccupancyGrid | rosReadOccupancyMap3D | rosReadOccupancyGrid |
rosWriteOccupancyGrid

Topics
“Improve Performance of ROS Using Message Structures”

 rosWriteBinaryOccupancyGrid

1-225

rosWriteCameraInfo
Write monocular or stereo camera parameters to ROS or ROS 2 message structure

Syntax
msgOut = rosWriteCameraInfo(msg,cameraParams)
[msgOut1,msgOut2] = rosWriteCameraInfo(msg,stereoParams)

Description
msgOut = rosWriteCameraInfo(msg,cameraParams) writes data from the monocular camera
parameters structure, cameraParams, to a sensor_msgs/CameraInfo message structure, msg, and
returns the output message, msgOut.

Use rosWriteCameraInfo to write the camera parameters obtained after the calibration process.
For more information on performing camera calibration using Computer Vision Toolbox™, see
“Camera Calibration” (Computer Vision Toolbox).

[msgOut1,msgOut2] = rosWriteCameraInfo(msg,stereoParams) writes data from the stereo
camera parameters structure, stereoParams, to two sensor_msgs/CameraInfo message
structures, msgOut1 and msgOut2.

Examples

Write Camera Parameters to ROS Message

Create a set of calibration images.

images = imageDatastore(fullfile(toolboxdir("vision"),"visiondata", ...
 "calibration","mono"));
imageFileNames = images.Files;

Detect calibration pattern.

[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);

Generate world coordinates of the corners of the squares.

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Calibrate the camera.

I = readimage(images,1);
imageSize = [size(I,1),size(I,2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
 ImageSize=imageSize);

Create a ROS sensor_msgs/CameraInfo message structure.

msg = rosmessage("sensor_msgs/CameraInfo","DataFormat","struct");

1 Functions

1-226

Write the camera parameters obtained after calibration to the ROS message. Use the toStruct
function to convert the cameraParameters object to a structure.

msg = rosWriteCameraInfo(msg,toStruct(params))

msg = struct with fields:
 MessageType: 'sensor_msgs/CameraInfo'
 Header: [1x1 struct]
 Height: 712
 Width: 1072
 DistortionModel: 'plumb_bob'
 D: [5x1 double]
 K: [9x1 double]
 R: [9x1 double]
 P: [12x1 double]
 BinningX: 0
 BinningY: 0
 Roi: [1x1 struct]

Write Stereo Camera Parameters to ROS Messages

Specify images containing a checkerboard for calibration.

imageDir = fullfile(toolboxdir("vision"),"visiondata","calibration","stereo");
leftImages = imageDatastore(fullfile(imageDir,"left"));
rightImages = imageDatastore(fullfile(imageDir,"right"));

Detect the checkerboards.

[imagePoints,boardSize] = detectCheckerboardPoints(leftImages.Files,rightImages.Files);

Specify world coordinates of checkerboard keypoints.

squareSizeInMillimeters = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSizeInMillimeters);

Read in the images.

I1 = readimage(leftImages,1);
I2 = readimage(rightImages,1);
imageSize = [size(I1, 1),size(I1, 2)];

Calibrate the stereo camera system.

stereoParams = estimateCameraParameters(imagePoints,worldPoints,ImageSize=imageSize);

Rectify the images using full output view.

[J1_full,J2_full] = rectifyStereoImages(I1,I2,stereoParams,OutputView="full");

Create a ROS sensor_msgs/CameraInfo message structure.

msg = rosmessage("sensor_msgs/CameraInfo","DataFormat","struct");

Write the stereo parameters obtained after calibration to two ROS messages. Use the toStruct
function to convert the stereoParameters object to a structure.

 rosWriteCameraInfo

1-227

[msg1,msg2] = rosWriteCameraInfo(msg,toStruct(stereoParams))

msg1 = struct with fields:
 MessageType: 'sensor_msgs/CameraInfo'
 Header: [1x1 struct]
 Height: 960
 Width: 1280
 DistortionModel: 'plumb_bob'
 D: [5x1 double]
 K: [9x1 double]
 R: [9x1 double]
 P: [12x1 double]
 BinningX: 0
 BinningY: 0
 Roi: [1x1 struct]

msg2 = struct with fields:
 MessageType: 'sensor_msgs/CameraInfo'
 Header: [1x1 struct]
 Height: 960
 Width: 1280
 DistortionModel: 'plumb_bob'
 D: [5x1 double]
 K: [9x1 double]
 R: [9x1 double]
 P: [12x1 double]
 BinningX: 0
 BinningY: 0
 Roi: [1x1 struct]

Input Arguments
msg — ROS or ROS 2 camera info message
sensor_msgs/CameraInfo message structure

ROS or ROS 2 sensor_msgs/CameraInfo message, specified as a message structure.
Data Types: struct

cameraParams — Monocular camera parameters structure
CameraParameters structure

Monocular camera parameters structure, specified as a cameraParameters structure. To obtain the
structure from a cameraParameters object, use the toStruct function.
Data Types: struct

stereoParams — Stereo camera parameters structure
StereoParameters structure

Stereo camera parameters structure, specified as a stereoParameters structure. To obtain the
structure from a stereoParameters object, use the toStruct function.
Data Types: struct

1 Functions

1-228

Output Arguments
msgOut — ROS or ROS 2 camera info message for a monocular camera
sensor_msgs/CameraInfo message structure

ROS or ROS 2 camera info message for a monocular camera, returned as a sensor_msgs/
CameraInfo message structure.

msgOut1 — ROS or ROS 2 camera info message for camera 1 in a stereo pair
sensor_msgs/CameraInfo message structure

ROS or ROS 2 camera info message for camera 1 in a stereo pair, returned as a sensor_msgs/
CameraInfo message structure.

msgOut2 — ROS or ROS 2 camera info message for camera 2 in a stereo pair
sensor_msgs/CameraInfo message structure

ROS or ROS 2 camera info message for camera 2 in a stereo pair, returned as a sensor_msgs/
CameraInfo message structure.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rosReadImage | rosWriteImage

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

 rosWriteCameraInfo

1-229

rosWriteImage
Write MATLAB image to ROS or ROS 2 image message

Syntax
msgOut = rosWriteImage(msg,img)
msgOut = rosWriteImage(msg,img,alpha)
msgOut = rosWriteImage(___ ,"Encoding",encodingParam)

Description
msgOut = rosWriteImage(msg,img) converts the MATLAB image, img, to a message structure
and stores the ROS or ROS 2 compatible image data in the message structure, msg. The message
must be a 'sensor_msgs/Image' message. 'sensor_msgs/CompressedImage' messages are not
supported. The function does not perform any color space conversion, so the img input needs to have
the encoding that you specify in the Encoding property of the message.

msgOut = rosWriteImage(msg,img,alpha) converts the MATLAB image, img, to a message
structure. If the image encoding supports an alpha channel (rgba or bgra family), specify this alpha
channel in alpha. Alternatively, the input image can store the alpha channel as its fourth channel.

msgOut = rosWriteImage(___ ,"Encoding",encodingParam) specifies the encoding of the
image message as a name-value argument using any of the previous input arguments. If the
Encoding field of the message is not set, use this syntax to set the field.

Input Arguments
msg — ROS or ROS 2 image message
'sensor_msgs/Image' message structure

ROS or ROS 2 'sensor_msgs/Image' message, specified as a message structure.

img — Image
grayscale image matrix | RGB image matrix | m-by-n-by-3 array

Image, specified as a matrix representing a grayscale or RGB image or as an m-by-n-by-3 array,
depending on the sensor image.

alpha — Alpha channel
uint8 grayscale image

Alpha channel, specified as a uint8 grayscale image. Alpha must be the same size and data type as
img.

encodingParam — Encoding of image message
"rgb8" | "rgba8" | "rgb16" | string scalar

Encoding of image message, specified as a string scalar. Using this input argument overwrites the
Encoding field of the input msg. For more information, see “ROS Image Encoding” on page 1-231.

1 Functions

1-230

Outputs
msgOut — ROS or ROS 2 image message
'sensor_msgs/Image' structure

ROS or ROS 2 'sensor_msgs/Image' image message, specified as a message structure.
'sensor_msgs/CompressedImage' messages are not supported.

You can use the same variable for the input and output argument to directly assign to the existing
message.

img = uint8(10*rand(128,128,3));
msg = rosmessage("sensor_msgs/Image","DataFormat","struct");
msg = rosWriteImage(msg,img,"Encoding","rgb8");

ROS Image Encoding
You must specify the correct encoding of the input image in the Encoding property of the image
message. If you do not specify the image encoding before calling the function, the default encoding,
rgb8, is used (3-channel RGB image with uint8 values). The function does not perform any color
space conversion, so the img input needs to have the encoding that you specify in the Encoding
property of the message.

All encoding types supported for the rosReadImage are also supported in this function. For more
information on supported encoding types and their representations in MATLAB, see rosReadImage.

Bayer-encoded images (bayer_rggb8, bayer_bggr8, bayer_gbrg8, bayer_grbg8, and their 16-
bit equivalents) must be given as 8-bit or 16-bit single-channel images or they do not encode.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Specify the "Encoding",encodParam name-value argument when generating code.
• Usage in MATLAB Function block is not supported.

See Also
rosReadImage | rosReadRGB

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

 rosWriteImage

1-231

rosWriteOccupancyGrid
Write values from occupancy grid to ROS or ROS 2 message structure

Syntax
msgOut = rosWriteOccupancyGrid(msg,map)

Description
msgOut = rosWriteOccupancyGrid(msg,map) writes occupancy values from the occupancy grid
map and other information from the ROS or ROS 2 message structure, msg, to an output message
msgOut.

Input Arguments
msg — ROS or ROS 2 occupancy grid message
'nav_msgs/OccupancyGrid' message structure

ROS or ROS 2 'nav_msgs/OccupancyGrid' message, specified as a message structure.

map — Occupancy map
occupancyMap object handle

Occupancy map, specified as an occupancyMap object handle.

Outputs
msgOut — ROS or ROS 2 occupancy grid message
'nav_msgs/OccupancyGrid' message structure

ROS or ROS 2 'nav_msgs/OccupancyGrid' message, specified as a message structure.

You can use the same variable for the input and output argument to directly assign to the existing
message.

map = occupancyMap(rand(10));
msg = rosmessage("nav_msgs/OccupancyGrid","DataFormat","struct");
msg = rosWriteOccupancyGrid(msg,map)

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-232

• Usage in MATLAB Function block is not supported.

See Also
Functions
rosReadBinaryOccupancyGrid | rosReadOccupancyGrid | rosReadOccupancyMap3D |
rosWriteBinaryOccupancyGrid

Topics
“Work with Specialized ROS Messages”
“Improve Performance of ROS Using Message Structures”

 rosWriteOccupancyGrid

1-233

runCore
Start ROS core

Syntax
runCore(device)

Description
runCore(device) starts the ROS core on the connected device. The ROS master uses a default port
number of 11311.

Examples

Run ROS Core on ROS Device

Connect to a remote ROS device and start a ROS core. The ROS core is needed to run ROS nodes to
communicate via a ROS network. You can run and stop a ROS core or node and check their status
using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of your specific
ROS device. The device contains information about the ROS device, including the available ROS
nodes that can be run using runNode.

ipaddress = '192.168.203.131';
d = rosdevice(ipaddress,'user','password')

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.131'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws'
 AvailableNodes: {'voxel_grid_filter_sl'}

Run a ROS core and check if it is running.

runCore(d)

Another roscore / ROS master is already running on the ROS device. Use the 'stopCore' function to stop it.

running = isCoreRunning(d)

running = logical
 1

Stop the ROS core and confirm that it is no longer running.

1 Functions

1-234

stopCore(d)
pause(2)
running = isCoreRunning(d)

running = logical
 0

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

Version History
Introduced in R2019b

See Also
rosdevice | stopCore | isCoreRunning

Topics
“Generate a Standalone ROS Node from Simulink”

 runCore

1-235

runNode
Start ROS or ROS 2 node

Syntax
runNode(device,modelName)
runNode(device,modelName,masterURI)
runNode(device,modelName,masterURI,nodeHost)

Description
runNode(device,modelName) starts the ROS or ROS 2 node associated with the deployed
Simulink model named modelName. The node must be deployed in the workspace specified by the
CatkinWorkspace property of the input rosdevice object or the ROS2Workspace property of the
input ros2device object, device. By default, the node connects to the ROS master that MATLAB is
connected to with the device.DeviceAddress property.

runNode(device,modelName,masterURI) connects to the specified master URI. This syntax is
applicable only when device is a rosdevice object.

runNode(device,modelName,masterURI,nodeHost) connects to the specified master URI and
node host. The node advertises its address as the host name or IP address given in nodeHost. This
syntax is applicable only when device is a rosdevice object.

Examples

Run ROS Node on ROS Device

Connect to a remote ROS device and start a ROS node. Run a ROS core so that ROS nodes can
communicate via a ROS network. You can run and stop a ROS core or node and check their status
using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of your specific
ROS device. The device already contains the available ROS nodes that can be run using runNode.

ipaddress = '192.168.203.129';
d = rosdevice(ipaddress,'user','password');
d.ROSFolder = '/opt/ros/indigo';
d.CatkinWorkspace = '~/catkin_ws_test'

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.129'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

1 Functions

1-236

Run a ROS core. Connect MATLAB® to the ROS master using rosinit. This core enables you to run
ROS nodes on your ROS device.

runCore(d)
rosinit(d.DeviceAddress,11311)

Initializing global node /matlab_global_node_84497 with NodeURI http://192.168.203.1:56034/

Check the available ROS nodes on the connected ROS device. These nodes listed were generated
from Simulink® models following the process in the “Get Started with ROS in Simulink” example.

d.AvailableNodes

ans = 1×2 cell
 {'robotcontroller'} {'robotcontroller2'}

Run a ROS node and specify the node name. Check if the node is running.

runNode(d,'RobotController')
running = isNodeRunning(d,'RobotController')

running = logical
 1

Stop the ROS node. Disconnect from the ROS network. Stop the ROS core.

stopNode(d,'RobotController')
rosshutdown

Shutting down global node /matlab_global_node_84497 with NodeURI http://192.168.203.1:56034/

stopCore(d)

Run Multiple ROS Nodes

Run multiple ROS nodes on a connected ROS device. ROS nodes can be generated using Simulink®
models to perform different tasks on the ROS network. These nodes are then deployed on a ROS
device and can be run independently of Simulink®.

This example uses two different Simulink models that have been deployed as ROS nodes. See
“Generate a Standalone ROS Node from Simulink” and follow the instructions to generate and deploy
a ROS node. Do this twice and name them 'robotcontroller' and 'robotcontroller2'. The
'robotcontroller' node sends velocity commands to a robot to navigate it to a given point. The
'robotcontroller2' node uses the same model, but doubles the linear velocity to drive the robot
faster.

Create a connection to a ROS device. Specify the address, user name, and password of your specific
ROS device. The device contains information about the ROS device, including the available ROS
nodes that can be run using runNode.

ipaddress = '192.168.203.129';
d = rosdevice(ipaddress,'user','password')

 runNode

1-237

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.129'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws'
 AvailableNodes: {0×1 cell}

d.CatkinWorkspace = '~/catkin_ws_test'

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.129'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. The ROS Core is the master enables you to run ROS nodes on your ROS device.
Connect MATLAB® to the ROS master using rosinit. For this example, the port is set to 11311.
rosinit can automatically select a port for you without specifying this input.

runCore(d)
rosinit(d.DeviceAddress,11311)

Initializing global node /matlab_global_node_66434 with NodeURI http://192.168.203.1:59395/

Check the available ROS nodes on the connected ROS device. The nodes listed in this example were
generated from Simulink® models following the process in the “Generate a Standalone ROS Node
from Simulink” example. Two separate nodes are generated, 'robotcontroller' and
'robotcontroller2', which have the linear velocity set to 1 and 2 in the model respectively.

d.AvailableNodes

ans = 1×2 cell
 {'robotcontroller'} {'robotcontroller2'}

Start up the Robot Simulator using ExampleHelperSimulinkRobotROS. This simulator
automatically connects to the ROS master on the ROS device. You will use this simulator to run a ROS
node and control the robot.

sim = ExampleHelperSimulinkRobotROS;

1 Functions

1-238

Run a ROS node, specifying the node name. The 'robotcontroller' node commands the robot to a
specific location ([-10 10]). Wait to see the robot drive.

runNode(d,'robotcontroller')
pause(10)

 runNode

1-239

Reset the Robot Simulator to reset the robot position. Alternatively, click Reset Simulation. Because
the node is still running, the robot continues back to the specific location. To stop sending commands,
stop the node.

resetSimulation(sim.Simulator)
pause(5)

1 Functions

1-240

stopNode(d,'robotcontroller')

Run the 'robotcontroller2' node. This model drives the robot with twice the linear velocity.
Reset the robot position. Wait to see the robot drive. You should see a wider turn due to the increased
velocity.

runNode(d,'robotcontroller2')
resetSimulation(sim.Simulator)
pause(10)

 runNode

1-241

Close the simulator. Stop the ROS node. Disconnect from the ROS network and stop the ROS core.

close
stopNode(d,'robotcontroller2')
rosshutdown

Shutting down global node /matlab_global_node_66434 with NodeURI http://192.168.203.1:59395/

stopCore(d)

Input Arguments
device — ROS or ROS 2 device
rosdevice object | ros2device object

ROS or ROS 2 device, specified as a rosdevice or ros2device object, respectively.

modelName — Name of the deployed Simulink model
character vector

Name of the deployed Simulink model, specified as a character vector. If the model name is not valid,
the function returns an error.

masterURI — URI of the ROS master
character vector

1 Functions

1-242

URI of the ROS master, specified as a character vector. On startup, the node connects to the ROS
master with the given URI.

nodeHost — Host name for the node
character vector

Host name for the node, specified as a character vector. The node uses this host name to advertise
itself on the ROS network for others to connect to it.

Version History
Introduced in R2019b

See Also
rosdevice | ros2device | stopNode | isNodeRunning

Topics
“Connect to a ROS Network”
“Generate a Standalone ROS Node from Simulink”
“Generate a Standalone ROS 2 Node from Simulink”

 runNode

1-243

scatter3
Display point cloud in scatter plot

Syntax
scatter3(pcloud)
scatter3(pcloud,Name,Value)
h = scatter3(___)

Description
scatter3(pcloud) plots the input pcloud point cloud as a 3-D scatter plot in the current axes
handle. If the data contains RGB information for each point, the scatter plot is colored accordingly.

scatter3(pcloud,Name,Value) provides additional options specified by one or more
Name,Value pair arguments. Name must appear inside single quotes (''). You can specify several
name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN).

h = scatter3(___) returns the scatter series object, using any of the arguments from previous
syntaxes. Use h to modify properties of the scatter series after it is created.

When plotting ROS point cloud messages, MATLAB follows the standard ROS convention for axis
orientation. This convention states that positive x is forward, positive y is left, and positive z is
up. If cameras are used, a second frame is defined with an “_optical” suffix that changes the
orientation of the axis. In this case, positive z is forward, positive x is right, and positive y is down.
MATLAB looks for the “_optical” suffix and will adjust the axis orientation of the scatter plot
accordingly. For more information, see Axis Orientation on the ROS Wiki.

Examples

Get and Plot a 3-D Point Cloud

Connect to a ROS network. Subscribe to a point cloud message topic.

rosinit('192.168.17.129')

Initializing global node /matlab_global_node_65972 with NodeURI http://192.168.17.1:51971/

sub = rossubscriber('/camera/depth/points');
pause(1)

Get the latest point cloud message. Plot the point cloud.

pcloud = sub.LatestMessage;
scatter3(pcloud)

1 Functions

1-244

https://www.ros.org/reps/rep-0103.html#axis-orientation

Plot all points as black dots.

scatter3(sub.LatestMessage,'MarkerEdgeColor',[0 0 0]);

 scatter3

1-245

Input Arguments
pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/PointCloud2' ROS
message.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MarkerEdgeColor',[1 0 0]

MarkerEdgeColor — Marker outline color
"flat" (default) | RGB triplet | hexadecimal color code | "r" | "g" | "b" | ...

Marker outline color, specified "flat", an RGB triplet, a hexadecimal color code, a color name, or a
short name. The default value of "flat" uses colors from the CData property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

1 Functions

1-246

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1], for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are
equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"
"none" Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Example: [0.5 0.5 0.5]
Example: "blue"
Example: "#D2F9A7"

Parent — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of 'Parent' and an axes object in
which to draw the point cloud. By default, the point cloud is plotted in the active axes.

 scatter3

1-247

Outputs
h — Scatter series object
scalar

Scatter series object, returned as a scalar. This value is a unique identifier, which you can use to
query and modify the properties of the scatter object after it is created.

Version History
Introduced in R2019b

See Also
readXYZ | readRGB

1 Functions

1-248

search
Search ROS network for parameter names

Syntax
pnames = search(ptree,searchstr)
[pnames,pvalues] = search(ptree,searchstr)

Description
pnames = search(ptree,searchstr) searches within the parameter tree ptree and returns the
parameter names that contain the specified search string, searchstr.

[pnames,pvalues] = search(ptree,searchstr) also returns the parameter values.

The following ROS data types are supported as values of parameters. For each ROS data type, the
corresponding MATLAB data type is also listed:

• 32-bit integers — int32
• Booleans — logical
• doubles — double
• strings — string scalar, string, or character vector, char
• lists — cell array
• dictionaries — structure

Examples

Search for ROS Parameter Names

Connect to ROS network. Specify the IP address of the ROS master.

rosinit('192.168.17.128')

Initializing global node /matlab_global_node_48144 with NodeURI http://192.168.17.1:54848/

Create a parameter tree.

ptree = rosparam;

Search for parameter names that contain 'gravity'.

[pnames,pvalues] = search(ptree,'gravity')

pnames = 1×3 cell array
 {'/gazebo/gravity_x'} {'/gazebo/gravity_y'} {'/gazebo/gravity_z'}

pvalues = 3×1 cell array
 {[0]}

 search

1-249

 {[0]}
 {[-9.8000]}

Input Arguments
ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using the rosparam
function.

searchstr — ROS parameter search string
string scalar | character vector

ROS parameter search string specified as a string scalar or character vector. The search function
returns all parameters that contain this character vector.

Output Arguments
pnames — Parameter values
cell array of character vectors

Parameter names, returned as a cell array of character vectors. These character vectors match the
parameter names in the ROS master that contain the search character vector.

pvalues — Parameter values
cell array

The following ROS data types are supported as values of parameters. For each ROS data type, the
corresponding MATLAB data type is also listed:

• 32-bit integers — int32
• Booleans — logical
• doubles — double
• strings — string scalar, string, or character vector, char
• lists — cell array
• dictionaries — structure

Base64-encoded binary data and iso 8601 data from ROS are not supported.

Limitations
Base64-encoded binary data and iso 8601 data from ROS are not supported.

Version History
Introduced in R2019b

1 Functions

1-250

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This function supports C/C++ code generation with the limitations:

• Retrieving values is not supported.

See Also
get | rosparam

 search

1-251

seconds
Returns seconds of a time or duration

Syntax
secs = seconds(time)
secs = seconds(duration)

Description
secs = seconds(time) returns the scalar number, secs, in seconds that represents the same
value as the time object, time.

secs = seconds(duration) returns the scalar number, secs, in seconds that represents the same
value as the duration object, duration.

Input Arguments
time — Current ROS or system time
Time object handle

ROS or system time, specified as a Time object handle. Create a Time object using rostime.

duration — Duration
ROS Duration object

Duration, specified as a ROS Duration object with Sec and Nsec properties. Create a Duration
object using rosduration.

Output Arguments
secs — Total time
scalar in seconds

Total time of the Time or Duration object, returned as a scalar in seconds.

Version History
Introduced in R2019b

See Also
rosduration | rostime

1 Functions

1-252

select
Select subset of messages in rosbag

Syntax
bagsel = select(bag)
bagsel = select(bag,Name,Value)

Description
bagsel = select(bag) returns a BagSelection object, bagsel, that contains all of the
messages in the BagSelection object, bag.

This function creates a copy of the BagSelection object or returns a new BagSelection object
that contains the specified message selection.

bagsel = select(bag,Name,Value) provides additional options specified by one or more name-
value pair arguments. For example, "Topic","/odom" selects a subset of the messages, filtered by
the topic /odom.

Examples

Create Copy of rosbag

Retrieve the rosbag. Specify the file path.

bag = rosbag('ex_multiple_topics.bag');

Use select with no selection criteria to create a copy of the rosbag.

bagCopy = select(bag);

Select Subset of Messages In rosbag

Retrieve the rosbag. Specify the file path.

bag = rosbag('ex_multiple_topics.bag');

Select all messages within the first second of the rosbag.

bag = select(bag,'Time',[bag.StartTime,bag.StartTime + 1]);

Input Arguments
bag — Messages in rosbag
BagSelection object

 select

1-253

Messages in a rosbag, specified as a BagSelection object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "Topic","/odom" selects a subset of the messages, filtered by the topic /odom.

MessageType — ROS message type
string scalar | character vector | cell array of string scalars | cell array of character vectors

ROS message type, specified as a string scalar, character vector, cell array of string scalars, or cell
array of character vectors. Multiple message types can be specified with a cell array.
Example: select(bag,"MessageType",{"nav_msgs/Odometry","rosgraph_msgs/Clock"})
Data Types: char | string | cell

Time — Start and end times of rosbag selection
n-by-2 vector

Start and end times of the rosbag selection, specified as an n-by-2 vector.
Example: select(bag,"Time",[bag.StartTime,bag.StartTime+1])
Data Types: double

Topic — ROS topic name
string scalar | character vector | cell array of string scalars | cell array of character vectors

ROS topic name, specified as a string scalar, character vector, cell array of string scalars, or cell array
of character vectors. Multiple topic names can be specified with a cell array.
Example: select(bag,"Topic",{"/odom","/clock"})
Data Types: char | string | cell

Output Arguments
bagsel — Copy or subset of rosbag messages
BagSelection object

Copy or subset of rosbag messages, returned as a BagSelection object.

Version History
Introduced in R2019b

See Also
readMessages | rosbag | timeseries

1 Functions

1-254

send
Publish ROS message to topic

Syntax
send(pub,msg)

Description
send(pub,msg) publishes a message to the topic specified by the publisher, pub. This message can
be received by all subscribers in the ROS network that are subscribed to the topic specified by pub.

Examples

Create, Send, and Receive ROS Messages

Set up a publisher and subscriber to send and receive a message on a ROS network.

Connect to a ROS network.

rosinit

Launching ROS Core...
....Done in 4.3803 seconds.
Initializing ROS master on http://172.30.131.134:56652.
Initializing global node /matlab_global_node_76153 with NodeURI http://bat6234win64:63667/ and MasterURI http://localhost:56652.

Create a publisher with a specific topic and message type. You can also return a default message to
send using this publisher.

[pub,msg] = rospublisher('position','geometry_msgs/Point');

Modify the message before sending it over the network.

msg.X = 1;
msg.Y = 2;
send(pub,msg);

Create a subscriber and wait for the latest message. Verify the message is the one you sent.

sub = rossubscriber('position')

sub =
 Subscriber with properties:

 TopicName: '/position'
 LatestMessage: [1x1 Point]
 MessageType: 'geometry_msgs/Point'
 BufferSize: 1
 NewMessageFcn: []
 DataFormat: 'object'

 send

1-255

pause(1);
sub.LatestMessage

ans =
 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'
 X: 1
 Y: 2
 Z: 0

 Use showdetails to show the contents of the message

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_76153 with NodeURI http://bat6234win64:63667/ and MasterURI http://localhost:56652.
Shutting down ROS master on http://172.30.131.134:56652.

Input Arguments
pub — ROS publisher
Publisher object handle

ROS publisher, specified as a Publisher object handle. You can create the object using
rospublisher.

msg — ROS message
Message object handle | structure

ROS message, specified as a Message object handle or structure. You can create object using
rosmessage.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 1-256.

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

1 Functions

1-256

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for struct messages.

See Also
receive | rosmessage | rostopic | rossubscriber | rospublisher

Topics
“Exchange Data with ROS Publishers and Subscribers”

 send

1-257

sendGoal
Send goal message to action server

Syntax
sendGoal(client,goalMsg)

Description
sendGoal(client,goalMsg) sends a goal message to the action server. The specified action client
tracks this goal. The function does not wait for the goal to be executed and returns immediately.

If the ActionFcn, FeedbackFcn, and ResultFcn callbacks of the client are defined, they are called
when the goal is processing on the action server. All callbacks associated with a previously sent goal
are disabled, but the previous goal is not canceled.

Examples

Create and Send ROS Action Goal Message

This example shows how to create goal messages and send them to an active ROS action server on a
ROS network. You must create a ROS action client to connect to this server.

Start ROS-Enabled Virtual Machine

• Download and install the virtual machine (VM) using the instructions in “Get Started with Gazebo
and Simulated TurtleBot” example.

• Start the Ubuntu® VM desktop.
• On the Ubuntu desktop, click ROS Noetic Terminal.

Launch ROS Action Server in ROS-Enabled VM

Source the appropriate ROS environment setup script in the ROS noetic terminal before running any
ROS commands.

source ~/Documents/mw_catkin_ws/devel/setup.bash

Run the action server in the ROS noetic terminal.

roslaunch turtlebot_actions server_turtlebot_move.launch

Connect to ROS from MATLAB

Connect to the ROS node using rosinit with the IP address of the ROS-enabled VM.

rosIP = "192.168.198.128"; % IP address
rosinit(rosIP,11311) % Initialize ROS connection

Initializing global node /matlab_global_node_19677 with NodeURI http://192.168.198.1:61572/ and MasterURI http://192.168.198.128:11311.

1 Functions

1-258

Create ROS Action Client

Create a ROS action client using rosactionclient and get a goal message. The action client object
actClient connects to the already running ROS action server. The goalMsg is a valid goal message.
Update the message parameters with your specific goal.

[actClient,goalMsg] = rosactionclient("/turtlebot_move");
disp(goalMsg)

 ROS TurtlebotMoveGoal message with properties:

 MessageType: 'turtlebot_actions/TurtlebotMoveGoal'
 TurnDistance: 0
 ForwardDistance: 0

 Use showdetails to show the contents of the message

Create ROS Message Using ROS Action Client

Create a message using rosmessage function and the action client object. This message sends linear
and angular velocity commands to a Turtlebot® robot.

goalMsg = rosmessage(actClient);
disp(goalMsg)

 ROS TurtlebotMoveGoal message with properties:

 MessageType: 'turtlebot_actions/TurtlebotMoveGoal'
 TurnDistance: 0
 ForwardDistance: 0

 Use showdetails to show the contents of the message

Send Goal Message to Action Server

Modify the goal message parameters and send the goal to the action server.

goalMsg.ForwardDistance = 2; % in meters
sendGoal(actClient,goalMsg)

Send and Cancel ROS Action Goals

This example shows how to send and cancel goals for ROS actions. Action types must be setup
beforehand with an action server running.

You must have set up the '/fibonacci' action type. To run this action server, use the following
command on the ROS system:

rosrun actionlib_tutorials fibonacci_server

First, set up a ROS action client. Then, send a goal message with modified parameters. Finally, cancel
your goal and all goals on the action server.

Connect to a ROS network with a specified IP address. Create a ROS action client connected to the
ROS network using rosactionclient. Specify the action name. Wait for the client to be connected
to the server.

 sendGoal

1-259

rosinit('192.168.203.133',11311)

Initializing global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

[actClient,goalMsg] = rosactionclient('/fibonacci','DataFormat','struct');
waitForServer(actClient);

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = int32(4);
[resultMsg,resultState] = sendGoalAndWait(actClient,goalMsg)

resultMsg = struct with fields:
 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [0 1 1 2 3]

resultState =
'succeeded'

rosShowDetails(resultMsg)

ans =
 '
 MessageType : actionlib_tutorials/FibonacciResult
 Sequence : [0, 1, 1, 2, 3]'

Send a new goal message without waiting.

goalMsg.Order = int32(5);
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

delete(actClient)

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

Input Arguments
client — ROS action client
SimpleActionClient object handle

ROS action client, specified as a SimpleActionClient object handle. This simple action client
enables you to track a single goal at a time.

1 Functions

1-260

goalMsg — ROS action goal message
Message object handle | structure

ROS action goal message, specified as a Message object handle or structure. Update this message
with your goal details and send it to the ROS action client using sendGoal or sendGoalAndWait.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 1-261.

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the Build Type, Executable.

 sendGoal

1-261

• Usage in MATLAB Function block is not supported.

See Also
sendGoalAndWait | cancelGoal | rosactionclient | rosaction

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

1 Functions

1-262

sendGoalAndWait
Send goal message and wait for result

Syntax
resultMsg = sendGoalAndWait(client,goalMsg)
resultMsg = sendGoalAndWait(client,goalMsg,timeout)
[resultMsg,state,status] = sendGoalAndWait(___)

Description
resultMsg = sendGoalAndWait(client,goalMsg) sends a goal message using the specified
action client to the action server and waits until the action server returns a result message. Press
Ctrl+C to abort the wait.

resultMsg = sendGoalAndWait(client,goalMsg,timeout) specifies a timeout period in
seconds. If the server does not return the result in the timeout period, the function displays an error.

[resultMsg,state,status] = sendGoalAndWait(___) returns the final goal state and
associated status text using any of the previous syntaxes. The state contains information about
whether the goal execution succeeded or not.

Note In a future release, this syntax will not display an error if the server does not return the result
in the timeout period. Instead, it will return the state as 'timeout', which can be reacted to in the
calling code.

Examples

Send and Cancel ROS Action Goals

This example shows how to send and cancel goals for ROS actions. Action types must be setup
beforehand with an action server running.

You must have set up the '/fibonacci' action type. To run this action server, use the following
command on the ROS system:

rosrun actionlib_tutorials fibonacci_server

First, set up a ROS action client. Then, send a goal message with modified parameters. Finally, cancel
your goal and all goals on the action server.

Connect to a ROS network with a specified IP address. Create a ROS action client connected to the
ROS network using rosactionclient. Specify the action name. Wait for the client to be connected
to the server.

rosinit('192.168.203.133',11311)

Initializing global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

 sendGoalAndWait

1-263

[actClient,goalMsg] = rosactionclient('/fibonacci','DataFormat','struct');
waitForServer(actClient);

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = int32(4);
[resultMsg,resultState] = sendGoalAndWait(actClient,goalMsg)

resultMsg = struct with fields:
 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [0 1 1 2 3]

resultState =
'succeeded'

rosShowDetails(resultMsg)

ans =
 '
 MessageType : actionlib_tutorials/FibonacciResult
 Sequence : [0, 1, 1, 2, 3]'

Send a new goal message without waiting.

goalMsg.Order = int32(5);
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

delete(actClient)

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

Input Arguments
client — ROS action client
SimpleActionClient object handle

ROS action client, specified as a SimpleActionClient object handle. This simple action client
enables you to track a single goal at a time.

goalMsg — ROS action goal message
Message object handle | structure

1 Functions

1-264

ROS action goal message, specified as a Message object handle or structure. Update this message
with your goal details and send it to the ROS action client using sendGoal or sendGoalAndWait.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 1-266.

timeout — Timeout period
scalar in seconds

Timeout period for receiving a result message, specified as a scalar in seconds. If the client does not
receive a new result message in that time period, an error is displayed.

Output Arguments
resultMsg — Result message
ROS Message object | structure

Result message, returned as a ROS Message object or structure. The result message contains the
result data sent by the action server. This data depends on the action type.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 1-266.

state — Final goal state
character vector

Final goal state, returned as one of the following:

• 'pending' — Goal was received, but has not yet been accepted or rejected.
• 'active' — Goal was accepted and is running on the server.
• 'succeeded' — Goal executed successfully.
• 'preempted' — An action client canceled the goal before it finished executing.
• 'aborted' — The goal was aborted before it finished executing. The action server typically

aborts a goal.
• 'rejected' — The goal was not accepted after being in the 'pending' state. The action server

typically triggers this status.
• 'recalled' — A client canceled the goal while it was in the 'pending' state.
• 'lost' — An internal error occurred in the action client.

status — Status text
character vector

 sendGoalAndWait

1-265

Status text that the server associated with the final goal state, returned as a character vector.

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
sendGoal | cancelGoal | rosactionclient | rosaction

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

1 Functions

1-266

sendTransform
Send transformation to ROS network

Syntax
sendTransform(tftree,tf)

Description
sendTransform(tftree,tf) broadcasts a transform or array of transforms, tf, to the ROS
network as a TransformationStamped ROS message.

Examples

Send a Transformation to ROS Network

This example shows how to create a transformation and send it over the ROS network.

Create a ROS transformation tree. Use rosinit to connect a ROS network. Replace ipaddress with
your ROS network address.

rosinit;

Launching ROS Core...
....Done in 4.1192 seconds.
Initializing ROS master on http://192.168.125.1:56090.
Initializing global node /matlab_global_node_16894 with NodeURI http://HYD-KVENNAPU:63122/

tftree = rostf;
pause(2)

Verify the transformation you want to send over the network does not already exist. The
canTransform function returns false if the transformation is not immediately available.

canTransform(tftree,'new_frame','base_link')

ans = logical
 0

Create a TransformStamped message. Populate the message fields with the transformation
information.

tform = rosmessage('geometry_msgs/TransformStamped');
tform.ChildFrameId = 'new_frame';
tform.Header.FrameId = 'base_link';
tform.Transform.Translation.X = 0.5;
tform.Transform.Rotation.X = 0.5;
tform.Transform.Rotation.Y = 0.5;
tform.Transform.Rotation.Z = 0.5;
tform.Transform.Rotation.W = 0.5;

 sendTransform

1-267

Send the transformation over the ROS network.

sendTransform(tftree,tform)

Verify the transformation is now on the ROS network.

canTransform(tftree,'new_frame','base_link')

ans = logical
 1

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_16894 with NodeURI http://HYD-KVENNAPU:63122/
Shutting down ROS master on http://192.168.125.1:56090.

Input Arguments
tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can create a
transformation tree by calling the rostf function.

tf — Transformations between coordinate frames
TransformStamped object handle | array of object handles

Transformations between coordinate frames, returned as a TransformStamped object handle or as
an array of object handles. Transformations are structured as a 3-D translation (3-element vector)
and a 3-D rotation (quaternion).

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
transform | getTransform

1 Functions

1-268

set
Set value of ROS parameter or add new parameter

Syntax
set(ptree,paramname,pvalue)
set(ptree,namespace,pvalue)

Description
set(ptree,paramname,pvalue) assigns the value pvalue to the parameter with the name
paramname. This parameter is sent to the parameter tree ptree.

set(ptree,namespace,pvalue) assigns multiple values as a dictionary in pvalue under the
specified namespace.

The following ROS data types are supported as values of parameters. For each ROS data type, the
corresponding MATLAB data type is also listed.

• 32-bit integer — int32
• Boolean — logical
• double — double
• strings — string scalar, string, or character vector, char
• list — cell array (cell)
• dictionary — structure (struct)

Examples

Set and Get Parameter Value

Connect to the ROS network.

rosinit

Launching ROS Core...
...Done in 3.9247 seconds.
Initializing ROS master on http://172.30.131.134:51714.
Initializing global node /matlab_global_node_35883 with NodeURI http://bat6234win64:50072/ and MasterURI http://localhost:51714.

Create a ROS parameter tree. Set a double parameter. Get the parameter to verify it was set.

ptree = rosparam;
set(ptree,'DoubleParam',1.0)
get(ptree,'DoubleParam')

ans = 1

Shut down the ROS network.

 set

1-269

rosshutdown

Shutting down global node /matlab_global_node_35883 with NodeURI http://bat6234win64:50072/ and MasterURI http://localhost:51714.
Shutting down ROS master on http://172.30.131.134:51714.

Set A Dictionary Of Parameter Values

Use structures to specify a dictionary of ROS parameters under a specific namespace.

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.9335 seconds.
Initializing ROS master on http://172.30.131.134:59411.
Initializing global node /matlab_global_node_77544 with NodeURI http://bat6234win64:54825/ and MasterURI http://localhost:59411.

Create a dictionary of parameter values. This dictionary contains the information relevant to an
image. Display the structure to verify values.

image = imread('peppers.png');

pval.ImageWidth = size(image,1);
pval.ImageHeight = size(image,2);
pval.ImageTitle = 'peppers.png';
disp(pval)

 ImageWidth: 384
 ImageHeight: 512
 ImageTitle: 'peppers.png'

Set the dictionary of values using the desired namespace.

rosparam('set','ImageParam',pval)

Get the parameters using the namespace. Verify the parameter values.

pval2 = rosparam('get','ImageParam')

pval2 = struct with fields:
 ImageHeight: 512
 ImageTitle: 'peppers.png'
 ImageWidth: 384

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_77544 with NodeURI http://bat6234win64:54825/ and MasterURI http://localhost:59411.
Shutting down ROS master on http://172.30.131.134:59411.

1 Functions

1-270

Input Arguments
ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using the rosparam
function.

paramname — ROS parameter name
string scalar | character vector

ROS parameter name, specified as a string scalar or character vector. This string must match the
parameter name exactly.

pvalue — ROS parameter value or dictionary of values
int32 | logical | double | string scalar | character vector | cell array | structure

ROS parameter value or dictionary of values, specified as a supported MATLAB data type.

The following ROS data types are supported as values of parameters. For each ROS data type, the
corresponding MATLAB data type is also listed.

ROS Data Type MATLAB Data Type
32-bit integer int32
Boolean logical
double double
string string scalar, string, or character vector, char
list cell array (cell)
dictionary structure (struct)

namespace — ROS parameter namespace
string scalar | character vector

ROS parameter namespace, specified as a string scalar or character vector. All parameter names
starting with this string are listed when calling rosparam("list",namespace).

Limitations
Base64-encoded binary data and iso 8601 data from ROS are not supported.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 set

1-271

• Setting parameter values as heterogeneous cell arrays and structures are not supported.

See Also
get | rosparam

1 Functions

1-272

showdetails
Display all ROS message contents

Syntax
details = showdetails(msg)

Description
details = showdetails(msg) gets all data contents of message object msg. The details are
stored in details or displayed on the command line.

Note showdetails will be removed. Use rosShowDetails instead. For more information, see “ROS
Message Structure Functions” on page 1-274

Examples

Create Message and View Details

Create a message. Populate the message with data using the relevant properties.

msg = rosmessage('geometry_msgs/Point');
msg.X = 1;
msg.Y = 2;
msg.Z = 3;

View the message details.

showdetails(msg)

 X : 1
 Y : 2
 Z : 3

Input Arguments
msg — ROS message
Message object handle

ROS message, specified as a Message object handle.

Output Arguments
details — Details of ROS message
character vector

Details of a ROS message, returned as a character vector.

 showdetails

1-273

Version History
Introduced in R2019b

ROS Message Structure Functions
Not recommended starting in R2021a

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To support message structures as inputs, new functions that operate on specialized ROS messages
have been provided. These new functions are based on the existing object functions of message
objects, but support ROS and ROS 2 message structures as inputs instead of message objects.

The object functions will be removed in a future release.

Message Types Object Function Name New Function Name
Image

CompressedImage

readImage

writeImage

rosReadImage

rosWriteImage
LaserScan readCartesian

readScanAngles

lidarScan

plot

rosReadCartesian

rosReadScanAngles

rosReadLidarScan

rosPlot
PointCloud2 apply

readXYZ

readRGB

readAllFieldNames

readField

scatter3

rosApplyTransform

rosReadXYZ

rosReadRGB

rosReadAllFieldNames

rosReadField

rosPlot
Quaternion readQuaternion rosReadQuaternion
OccupancyGrid readBinaryOccupanyGrid

readOccupancyGrid

writeBinaryOccupanyGrid

writeOccupanyGrid

rosReadOccupancyGrid

rosReadBinaryOccupancyGr
id

rosReadOccupancyGrid

rosWriteBinaryOccupancyG
rid

rosWriteOccupancyGrid
Octomap readOccupancyMap3D rosReadOccupancyMap3D

1 Functions

1-274

Message Types Object Function Name New Function Name
PointStamped

PoseStamped

QuaternionStamped

Vector3Stamped

TransformStamped

apply rosApplyTransform

All messages showdetails rosShowDetails

See Also
rosmessage

 showdetails

1-275

stopCore
Stop ROS core

Syntax
stopCore(device)

Description
stopCore(device) stops the ROS core on the specified rosdevice, device. If multiple ROS cores
are running on the ROS device, the function stops all of them. If no core is running, the function
returns immediately.

Examples

Run ROS Core on ROS Device

Connect to a remote ROS device and start a ROS core. The ROS core is needed to run ROS nodes to
communicate via a ROS network. You can run and stop a ROS core or node and check their status
using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of your specific
ROS device. The device contains information about the ROS device, including the available ROS
nodes that can be run using runNode.

ipaddress = '192.168.203.131';
d = rosdevice(ipaddress,'user','password')

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.131'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws'
 AvailableNodes: {'voxel_grid_filter_sl'}

Run a ROS core and check if it is running.

runCore(d)

Another roscore / ROS master is already running on the ROS device. Use the 'stopCore' function to stop it.

running = isCoreRunning(d)

running = logical
 1

Stop the ROS core and confirm that it is no longer running.

1 Functions

1-276

stopCore(d)
pause(2)
running = isCoreRunning(d)

running = logical
 0

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

Version History
Introduced in R2019b

See Also
rosdevice | runCore | isCoreRunning

Topics
“Generate a Standalone ROS Node from Simulink”

 stopCore

1-277

stopNode
Stop ROS or ROS 2 node

Syntax
stopNode(device,modelName)

Description
stopNode(device,modelName) stops a running ROS or ROS 2 node that was deployed from a
Simulink model named modelName. The node is running on the specified rosdevice or ros2device
object, device. If the node is not running, the function returns immediately.

Examples

Run ROS Node on ROS Device

Connect to a remote ROS device and start a ROS node. Run a ROS core so that ROS nodes can
communicate via a ROS network. You can run and stop a ROS core or node and check their status
using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of your specific
ROS device. The device already contains the available ROS nodes that can be run using runNode.

ipaddress = '192.168.203.129';
d = rosdevice(ipaddress,'user','password');
d.ROSFolder = '/opt/ros/indigo';
d.CatkinWorkspace = '~/catkin_ws_test'

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.129'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. Connect MATLAB® to the ROS master using rosinit. This core enables you to run
ROS nodes on your ROS device.

runCore(d)
rosinit(d.DeviceAddress,11311)

Initializing global node /matlab_global_node_84497 with NodeURI http://192.168.203.1:56034/

Check the available ROS nodes on the connected ROS device. These nodes listed were generated
from Simulink® models following the process in the “Get Started with ROS in Simulink” example.

d.AvailableNodes

1 Functions

1-278

ans = 1×2 cell
 {'robotcontroller'} {'robotcontroller2'}

Run a ROS node and specify the node name. Check if the node is running.

runNode(d,'RobotController')
running = isNodeRunning(d,'RobotController')

running = logical
 1

Stop the ROS node. Disconnect from the ROS network. Stop the ROS core.

stopNode(d,'RobotController')
rosshutdown

Shutting down global node /matlab_global_node_84497 with NodeURI http://192.168.203.1:56034/

stopCore(d)

Run Multiple ROS Nodes

Run multiple ROS nodes on a connected ROS device. ROS nodes can be generated using Simulink®
models to perform different tasks on the ROS network. These nodes are then deployed on a ROS
device and can be run independently of Simulink®.

This example uses two different Simulink models that have been deployed as ROS nodes. See
“Generate a Standalone ROS Node from Simulink” and follow the instructions to generate and deploy
a ROS node. Do this twice and name them 'robotcontroller' and 'robotcontroller2'. The
'robotcontroller' node sends velocity commands to a robot to navigate it to a given point. The
'robotcontroller2' node uses the same model, but doubles the linear velocity to drive the robot
faster.

Create a connection to a ROS device. Specify the address, user name, and password of your specific
ROS device. The device contains information about the ROS device, including the available ROS
nodes that can be run using runNode.

ipaddress = '192.168.203.129';
d = rosdevice(ipaddress,'user','password')

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.129'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws'
 AvailableNodes: {0×1 cell}

d.CatkinWorkspace = '~/catkin_ws_test'

d =
 rosdevice with properties:

 stopNode

1-279

 DeviceAddress: '192.168.203.129'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. The ROS Core is the master enables you to run ROS nodes on your ROS device.
Connect MATLAB® to the ROS master using rosinit. For this example, the port is set to 11311.
rosinit can automatically select a port for you without specifying this input.

runCore(d)
rosinit(d.DeviceAddress,11311)

Initializing global node /matlab_global_node_66434 with NodeURI http://192.168.203.1:59395/

Check the available ROS nodes on the connected ROS device. The nodes listed in this example were
generated from Simulink® models following the process in the “Generate a Standalone ROS Node
from Simulink” example. Two separate nodes are generated, 'robotcontroller' and
'robotcontroller2', which have the linear velocity set to 1 and 2 in the model respectively.

d.AvailableNodes

ans = 1×2 cell
 {'robotcontroller'} {'robotcontroller2'}

Start up the Robot Simulator using ExampleHelperSimulinkRobotROS. This simulator
automatically connects to the ROS master on the ROS device. You will use this simulator to run a ROS
node and control the robot.

sim = ExampleHelperSimulinkRobotROS;

1 Functions

1-280

Run a ROS node, specifying the node name. The 'robotcontroller' node commands the robot to a
specific location ([-10 10]). Wait to see the robot drive.

runNode(d,'robotcontroller')
pause(10)

 stopNode

1-281

Reset the Robot Simulator to reset the robot position. Alternatively, click Reset Simulation. Because
the node is still running, the robot continues back to the specific location. To stop sending commands,
stop the node.

resetSimulation(sim.Simulator)
pause(5)

1 Functions

1-282

stopNode(d,'robotcontroller')

Run the 'robotcontroller2' node. This model drives the robot with twice the linear velocity.
Reset the robot position. Wait to see the robot drive. You should see a wider turn due to the increased
velocity.

runNode(d,'robotcontroller2')
resetSimulation(sim.Simulator)
pause(10)

 stopNode

1-283

Close the simulator. Stop the ROS node. Disconnect from the ROS network and stop the ROS core.

close
stopNode(d,'robotcontroller2')
rosshutdown

Shutting down global node /matlab_global_node_66434 with NodeURI http://192.168.203.1:59395/

stopCore(d)

Input Arguments
device — ROS or ROS2 device
rosdevice object | ros2device object

ROS or ROS 2 device, specified as a rosdevice or ros2device object, respectively.

modelName — Name of the deployed Simulink model
character vector

Name of the deployed Simulink model, specified as a character vector. If the model name is not valid,
the function returns immediately.

1 Functions

1-284

Version History
Introduced in R2019b

See Also
rosdevice | ros2device | runNode | isNodeRunning

Topics
“Generate a Standalone ROS Node from Simulink”
“Generate a Standalone ROS 2 Node from Simulink”

 stopNode

1-285

system
Execute system command on device

Syntax
system(device,command)
system(device,command,'sudo')
response = system(___)

Description
system(device,command) runs a command in the Linux command shell on the ROS or ROS 2
device. This function does not allow you to run interactive commands.

system(device,command,'sudo') runs a command with superuser privileges.

response = system(___) runs a command using any of the previous syntaxes with the command
shell output returned in response.

Examples

Run Linux Commands on ROS Device

Connect to a ROS device and run commands on the Linux(R) command shell.

Connect to a ROS device. Specify the device address, user name, and password of your ROS device.

d = rosdevice('192.168.17.128','user','password');

Run a command that lists the contents of the Catkin workspace folder.

system(d,'ls /home/user/catkin_ws_test')

ans =
 'build
 devel
 src
 '

Input Arguments
device — ROS or ROS 2 device
rosdevice object | ros2device object

ROS or ROS 2 device, specified as a rosdevice or ros2device object, respectively.

command — Linux command
character vector

1 Functions

1-286

Linux command, specified as a character vector.
Example: 'ls -al'

Output Arguments
response — Output from Linux shell
character vector

Output from Linux shell, returned as a character vector.

Version History
Introduced in R2019b

See Also
rosdevice | ros2device | putFile | getFile | deleteFile | dir | openShell

 system

1-287

timeseries
Create time series object for selected message properties

Syntax
[ts,cols] = timeseries(bag)
[ts,cols] = timeseries(bag,property)
[ts,cols] = timeseries(bag,property,...,propertyN)

Description
[ts,cols] = timeseries(bag) creates a time series for all numeric and scalar message
properties. The function evaluates each message in the current BagSelection or rosbagreader
object bag as ts. The cols output argument stores property names as a cell array of character
vectors.

The returned time series object is memory efficient because it stores only particular message
properties instead of whole messages.

[ts,cols] = timeseries(bag,property) creates a time series for a specific message property,
property. Property names can also be nested, for example, Pose.Pose.Position.X for the x-axis
position of a robot.

[ts,cols] = timeseries(bag,property,...,propertyN) creates a time series for range-
specific message properties. Each property is a different column in the time series object.

Examples

Create Time Series from Entire Bag Selection

Load the rosbag. Specify the file path.

bag = rosbag('ex_multiple_topics.bag');

Select a specific topic. Time series supports only single topics.

bagSelection = select(bag,'Topic','/odom');

Create a time series for the '/odom' topic.

ts = timeseries(bagSelection);

Create Time Series from Single Property

Load the rosbag. Specify the file path.

bag = rosbag('ex_multiple_topics.bag');

1 Functions

1-288

Select a specific topic. Time series support only single topics.

bagSelection = select(bag,'Topic','/odom');

Create a time series for the 'Pose.Pose.Position.X' property on the '/odom' topic.

ts = timeseries(bagSelection,'Pose.Pose.Position.X');

Create Time Series from Multiple Properties

Load the rosbag. Specify the file path.

bag = rosbag('ex_multiple_topics.bag');

Select a specific topic. Time series support only single topics.

bagSelection = select(bag,'Topic','/odom');

Create a time series for all the angular 'Twist' properties on the '/odom' topic.

ts = timeseries(bagSelection,'Twist.Twist.Angular.X', ...
 'Twist.Twist.Angular.Y', 'Twist.Twist.Angular.Z');

Create rosbag Selection Using rosbagreader Object

Load a rosbag log file and parse out specific messages based on the selected criteria.

Create a rosbagreader object of all the messages in the rosbag log file.

bagMsgs = rosbagreader("ros_multi_topics.bag")

bagMsgs =
 rosbagreader with properties:

 FilePath: 'B:\matlab\toolbox\robotics\robotexamples\ros\data\bags\ros_multi_topics.bag'
 StartTime: 201.3400
 EndTime: 321.3400
 NumMessages: 36963
 AvailableTopics: [4x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [36963x4 table]

Select a subset of the messages based on their timestamp and topic.

bagMsgs2 = select(bagMsgs,...
 Time=[bagMsgs.StartTime bagMsgs.StartTime + 1],...
 Topic='/odom')

bagMsgs2 =
 rosbagreader with properties:

 FilePath: 'B:\matlab\toolbox\robotics\robotexamples\ros\data\bags\ros_multi_topics.bag'
 StartTime: 201.3400

 timeseries

1-289

 EndTime: 202.3200
 NumMessages: 99
 AvailableTopics: [1x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [99x4 table]

Retrieve the messages in the selection as a cell array.

msgs = readMessages(bagMsgs2)

msgs=99×1 cell array
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 ⋮

Return certain message properties as a time series.

ts = timeseries(bagMsgs2,...
 'Pose.Pose.Position.X', ...
 'Twist.Twist.Angular.Y')

 timeseries

 Timeseries contains duplicate times.

 Common Properties:
 Name: '/odom Properties'
 Time: [99x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [99x2 double]
 DataInfo: tsdata.datametadata

Input Arguments
bag — Index of messages in rosbag
BagSelection object | rosbagreader object

Index of the messages in the rosbag, specified as a BagSelection or rosbagreader object. You can
get a BagSelection object by calling rosbag.

1 Functions

1-290

property — Property names
string scalar | character vector

Property names, specified as a string scalar or character vector. You can specify multiple properties.
Each property name is a separate input and represents a different column in the time series object.

Output Arguments
ts — Time series
Time object handle

Time series, returned as a Time object handle.

cols — List of property names
cell array of character vectors

List of property names, returned as a cell array of character vectors.

Version History
Introduced in R2019b

See Also
rosbag | select | readMessages | rosbagreader

Topics
“Time Series”

 timeseries

1-291

transform
Transform message entities into target coordinate frame

Syntax
tfentity = transform(tftree,targetframe,entity)
tfentity = transform(tftree,targetframe,entity,"msgtime")
tfentity = transform(tftree,targetframe,entity,sourcetime)

Description
tfentity = transform(tftree,targetframe,entity) retrieves the latest transformation
between targetframe and the coordinate frame of entity and applies it to entity, a ROS
message of a specific type. The tftree is the full transformation tree containing known
transformations between entities. If the transformation from entity to targetframe does not exist,
MATLAB produces an error.

tfentity = transform(tftree,targetframe,entity,"msgtime") uses the timestamp in the
header of the message, entity, as the source time to retrieve and apply the transformation.

tfentity = transform(tftree,targetframe,entity,sourcetime) uses the given source
time to retrieve and apply the transformation to the message, entity.

Examples

Get ROS Transformations and Apply to ROS Messages

This example shows how to set up a ROS transformation tree and transform frames based on
transformation tree information. It uses time-buffered transformations to access transformations at
different times.

Create a ROS transformation tree. Use rosinit to connect to a ROS network. Replace ipaddress
with your ROS network address.

ipaddress = '192.168.17.129';
rosinit(ipaddress,11311)

Initializing global node /matlab_global_node_14346 with NodeURI http://192.168.17.1:56312/

tftree = rostf;
pause(1)

Look at the available frames on the transformation tree.

tftree.AvailableFrames

ans = 36×1 cell
 {'base_footprint' }
 {'base_link' }
 {'camera_depth_frame' }

1 Functions

1-292

 {'camera_depth_optical_frame'}
 {'camera_link' }
 {'camera_rgb_frame' }
 {'camera_rgb_optical_frame' }
 {'caster_back_link' }
 {'caster_front_link' }
 {'cliff_sensor_front_link' }
 {'cliff_sensor_left_link' }
 {'cliff_sensor_right_link' }
 {'gyro_link' }
 {'mount_asus_xtion_pro_link' }
 {'odom' }
 {'plate_bottom_link' }
 {'plate_middle_link' }
 {'plate_top_link' }
 {'pole_bottom_0_link' }
 {'pole_bottom_1_link' }
 {'pole_bottom_2_link' }
 {'pole_bottom_3_link' }
 {'pole_bottom_4_link' }
 {'pole_bottom_5_link' }
 {'pole_kinect_0_link' }
 {'pole_kinect_1_link' }
 {'pole_middle_0_link' }
 {'pole_middle_1_link' }
 {'pole_middle_2_link' }
 {'pole_middle_3_link' }
 ⋮

Check if the desired transformation is now available. For this example, check for the transformation
from 'camera_link' to 'base_link'.

canTransform(tftree,'base_link','camera_link')

ans = logical
 1

Get the transformation for 3 seconds from now. The getTransform function will wait until the
transformation becomes available with the specified timeout.

desiredTime = rostime('now') + 3;
tform = getTransform(tftree,'base_link','camera_link',...
 desiredTime,'Timeout',5);

Create a ROS message to transform. Messages can also be retrieved off the ROS network.

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_link';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

Transform the ROS message to the 'base_link' frame using the desired time previously saved.

tfpt = transform(tftree,'base_link',pt,desiredTime);

 transform

1-293

Optional: You can also use apply with the stored tform to apply this transformation to the pt
message.

tfpt2 = apply(tform,pt);

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_14346 with NodeURI http://192.168.17.1:56312/

Get Buffered Transformations from ROS Network

This example shows how to access time-buffered transformations on the ROS network. Access
transformations for specific times and modify the BufferTime property based on your desired times.

Create a ROS transformation tree. Use rosinit to connect to a ROS network. Replace ipaddress
with your ROS network address.

ipaddress = '192.168.17.129';
rosinit(ipaddress,11311)

Initializing global node /matlab_global_node_78006 with NodeURI http://192.168.17.1:56344/

tftree = rostf;
pause(2);

Get the transformation from 1 second ago.

desiredTime = rostime('now') - 1;
tform = getTransform(tftree,'base_link','camera_link',desiredTime);

The transformation buffer time is 10 seconds by default. Modify the BufferTime property of the
transformation tree to increase the buffer time and wait for that buffer to fill.

tftree.BufferTime = 15;
pause(15);

Get the transformation from 12 seconds ago.

desiredTime = rostime('now') - 12;
tform = getTransform(tftree,'base_link','camera_link',desiredTime);

You can also get transformations at a time in the future. The getTransform function will wait until
the transformation is available. You can also specify a timeout to error if no transformation is found.
This example waits 5 seconds for the transformation at 3 seconds from now to be available.

desiredTime = rostime('now') + 3;
tform = getTransform(tftree,'base_link','camera_link',desiredTime,'Timeout',5);

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_78006 with NodeURI http://192.168.17.1:56344/

1 Functions

1-294

Input Arguments
tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can create a
transformation tree by calling the rostf function.

targetframe — Target coordinate frame
string scalar | character vector

Target coordinate frame that an entity transforms into, specified as a string scalar or character
vector. You can view the available frames for transformation calling tftree.AvailableFrames.

entity — Initial message entity
Message object handle

Initial message entity, specified as a Message object handle.

Supported messages are:

• geometry_msgs/PointStamped
• geometry_msgs/PoseStamped
• geometry_msgs/QuaternionStamped
• geometry_msgs/Vector3Stamped
• sensor_msgs/PointCloud2

sourcetime — ROS or system time
scalar | Time object handle

ROS or system time, specified as a scalar or Time object handle. The scalar is converted to a Time
object using rostime.

Output Arguments
tfentity — Transformed entity
Message object handle

Transformed entity, returned as a Message object handle.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 transform

1-295

• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
getTransform | canTransform

1 Functions

1-296

waitForServer
Wait for action server to start

Syntax
waitForServer(client)
waitForServer(client,timeout)
status = waitForServer(___)

Description
waitForServer(client) waits until the action server is started up and available to send goals. The
IsServerConnected property of the SimpleActionClient shows the status of the server
connection. Press Ctrl+C to abort the wait.

waitForServer(client,timeout) specifies a timeout period in seconds. If the action server does
not start up in the timeout period, this function displays an error.

status = waitForServer(___) returns a status indicating whether the action server is
available, using any of the arguments from the previous syntaxes. If the server is not available within
the timeout, status will be false, and this function will not display an error.

Examples

Setup a ROS Action Client and Execute an Action

This example shows how to create a ROS action client and execute the action. Action types must be
set up beforehand with an action server running.

You must have set up the '/fibonacci' action type. To run this action server, use the following
command on the ROS system:

rosrun actionlib_tutorials fibonacci_server

Connect to a ROS network. You must be connected to a ROS network to gather information about
what actions are available. Replace ipaddress with your network address.

ipaddress = '192.168.203.133';
rosinit(ipaddress,11311)

Initializing global node /matlab_global_node_81947 with NodeURI http://192.168.203.1:54283/

List actions available on the network. The only action set up on this network is the '/fibonacci'
action.

rosaction list

/fibonacci

Create an action client by specifying the action name. Use structures for ROS messages.

 waitForServer

1-297

[actClient,goalMsg] = rosactionclient('/fibonacci','DataFormat','struct');

Wait for the action client to connect to the server.

waitForServer(actClient);

The fibonacci action will calculate the fibonacci sequence for a given order specified in the goal
message. The goal message was returned when creating the action client and can be modified to send
goals to the ROS action server. Set the order to an int32 value of 8.

goalMsg.Order = int32(8);

Send the goal and wait for its completion. Specify a timeout of 10 seconds to complete the action.

[resultMsg,resultState] = sendGoalAndWait(actClient,goalMsg,10);

rosShowDetails(resultMsg)

ans =
 '
 MessageType : actionlib_tutorials/FibonacciResult
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13, 21]'

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_81947 with NodeURI http://192.168.203.1:54283/

Send and Cancel ROS Action Goals

This example shows how to send and cancel goals for ROS actions. Action types must be setup
beforehand with an action server running.

You must have set up the '/fibonacci' action type. To run this action server, use the following
command on the ROS system:

rosrun actionlib_tutorials fibonacci_server

First, set up a ROS action client. Then, send a goal message with modified parameters. Finally, cancel
your goal and all goals on the action server.

Connect to a ROS network with a specified IP address. Create a ROS action client connected to the
ROS network using rosactionclient. Specify the action name. Wait for the client to be connected
to the server.

rosinit('192.168.203.133',11311)

Initializing global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

[actClient,goalMsg] = rosactionclient('/fibonacci','DataFormat','struct');
waitForServer(actClient);

Send a goal message with modified parameters. Wait for the goal to finish executing.

1 Functions

1-298

goalMsg.Order = int32(4);
[resultMsg,resultState] = sendGoalAndWait(actClient,goalMsg)

resultMsg = struct with fields:
 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [0 1 1 2 3]

resultState =
'succeeded'

rosShowDetails(resultMsg)

ans =
 '
 MessageType : actionlib_tutorials/FibonacciResult
 Sequence : [0, 1, 1, 2, 3]'

Send a new goal message without waiting.

goalMsg.Order = int32(5);
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

delete(actClient)

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

Input Arguments
client — ROS action client
SimpleActionClient object handle

ROS action client, specified as a SimpleActionClient object handle. This simple action client
enables you to track a single goal at a time.

timeout — Timeout period
scalar in seconds

Timeout period for setting up ROS action server, specified as a scalar in seconds. If the client does
not connect to the server in the specified time period, an error is displayed.

 waitForServer

1-299

Output Arguments
status — Status of the action server start up
logical scalar

Status of the action server start up, returned as a logical scalar. If the server is not available within
the timeout period, status will be false.

Note Use the status output argument when you use waitForServer in the entry-point function for
code generation. This will avoid runtime errors and outputs the status instead, which can be reacted
to in the calling code.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
rosactionclient | sendGoalAndWait | cancelGoal | rosaction

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

1 Functions

1-300

waitForServer
Wait for ROS or ROS 2 service server to start

Syntax
waitForServer(client)
waitForServer(client,Timeout=timeoutperiod)
[status,statustext] = waitForServer(___)

Description
waitForServer(client) waits until the service server is started up and available to receive
requests. Press Ctrl+C to cancel the wait.

waitForServer(client,Timeout=timeoutperiod) specifies a timeout period in seconds using
the name-value pair Timeout=timeoutperiod. If the service server does not start up in the timeout
period, this function displays an error and lets MATLAB continue running the current program. The
default value of inf prevents MATLAB from running the current program until the service client
receives a service response.

[status,statustext] = waitForServer(___) returns a status indicating whether the
service server is available, and a statustext that captures additional information about the
status, using any of the arguments from the previous syntaxes. If the server is not available within
the Timeout, status will be false, and this function will not display an error.

Examples

Call Service Client with Default Message

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.2861 seconds.
Initializing ROS master on http://172.30.131.134:53576.
Initializing global node /matlab_global_node_51384 with NodeURI http://bat6234win64:49973/ and MasterURI http://localhost:53576.

Set up a service server. Use structures for the ROS message data format.

server = rossvcserver('/test', 'std_srvs/Empty', @exampleHelperROSEmptyCallback,...
 'DataFormat','struct');
client = rossvcclient('/test','DataFormat','struct');

Check whether the service server is available. If it is, wait for the service client to connect to the
server.

if(isServerAvailable(client))
 [connectionStatus,connectionStatustext] = waitForServer(client)
end

 waitForServer

1-301

connectionStatus = logical
 1

connectionStatustext =
'success'

Call service server with default message.

response = call(client)

response = struct with fields:
 MessageType: 'std_srvs/EmptyResponse'

If the call function above fails, it results in an error. Instead of an error, if you would prefer to react
to a call failure using conditionals, return the status and statustext outputs from the call
function. The status output indicates if the call succeeded, while statustext provides additional
information.

numCallFailures = 0;
[response,status,statustext] = call(client,"Timeout",3);
if ~status
 numCallFailures = numCallFailues + 1;
 fprintf("Call failure number %d. Error cause: %s\n",numCallFailures,statustext)
else
 disp(response)
end

 MessageType: 'std_srvs/EmptyResponse'

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_51384 with NodeURI http://bat6234win64:49973/ and MasterURI http://localhost:53576.
Shutting down ROS master on http://172.30.131.134:53576.

Call ROS 2 Service Client With a Custom Callback Function

Create a sample ROS 2 network with two nodes.

node_1 = ros2node('node_1_service_client');
node_2 = ros2node('node_2_service_client');

Set up a service server and attach it to a ROS 2 node. Specify the callback function flipstring,
which flips the input string. The callback function is defined at the end of this example.

server = ros2svcserver(node_1,'/test','test_msgs/BasicTypes',@flipString);

Set up a service client of the same service type and attach it to a different node.

client = ros2svcclient(node_2,'/test','test_msgs/BasicTypes');

Wait for the service client to connect to the server.

[connectionStatus,connectionStatustext] = waitForServer(client)

1 Functions

1-302

connectionStatus = logical
 1

connectionStatustext =
'success'

Create a request message based on the client. Assign the string to the corresponding field in the
message, string_value.

request = ros2message(client);
request.string_value = 'hello world';

Check whether the service server is available. If it is, send a service request and wait for a response.
Specify that the service waits 3 seconds for a response.

if(isServerAvailable(client))
 response = call(client,request,'Timeout',3);
end

The response is a flipped string from the request message which you see in the string_value field.

response.string_value

ans =
'dlrow olleh'

If the call function above fails, it results in an error. Instead of an error, if you would prefer to react
to a call failure using conditionals, return the status and statustext outputs from the call
function. The status output indicates if the call succeeded, while statustext provides additional
information.

numCallFailures = 0;
[response,status,statustext] = call(client,request,"Timeout",3);
if ~status
 numCallFailures = numCallFailues + 1;
 fprintf("Call failure number %d. Error cause: %s\n",numCallFailures,statustext)
else
 disp(response.string_value)
end

dlrow olleh

The callback function used to flip the string is defined below.

function resp = flipString(req,resp)
% FLIPSTRING Reverses the order of a string in REQ and returns it in RESP.
resp.string_value = fliplr(req.string_value);
end

Input Arguments
client — ROS or ROS 2 service client
ros.ServiceClient object handle | ros2serviceclient object handle

ROS or ROS 2 service client, specified as a ros.ServiceClient or ros2serviceclient object
handle, respectively. This service client enables you to send requests to the service server.

 waitForServer

1-303

Output Arguments
status — Status of the service server start up
logical scalar

Status of the service server start up, returned as a logical scalar. If the server is not available
within the timeout period, status will be false.

Note Use the status output argument when you use waitForServer in the entry-point function for
code generation. This will avoid runtime errors and outputs the status instead, which can be reacted
to in the calling code.

statustext — Status text associated with the service call status
character vector

Status text associated with the service call status, returned as one of the following:

• 'success' — The server is available.
• 'input' — The input to the function is invalid.
• 'timeout' — The server did not become available before the timeout period expired.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
rossvcclient | rossvcserver | ros2svcclient | ros2svcserver | call | rosservice

Topics
“Call and Provide ROS Services”
“Call and Provide ROS 2 Services”

1 Functions

1-304

waitForTransform
Wait until a transformation is available

Note waitForTransform will be removed in a future release. Use getTransform with a specified
timeout instead. Use inf to wait indefinitely.

Syntax
waitForTransform(tftree,targetframe,sourceframe)
waitForTransform(tftree,targetframe,sourceframe,timeout)

Description
waitForTransform(tftree,targetframe,sourceframe) waits until the transformation
between targetframe and sourceframe is available in the transformation tree, tftree. This
functions disables the command prompt until a transformation becomes available on the ROS
network.

waitForTransform(tftree,targetframe,sourceframe,timeout) specifies a timeout period
in seconds. If the transformation does not become available, MATLAB displays an error, but continues
running the current program.

Examples

Wait for Transformation Between Robot Frames

Connect to the ROS network. Specify the IP address of your network.

rosinit('192.168.17.129')

Initializing global node /matlab_global_node_48383 with NodeURI http://192.168.17.1:54695/

Create a ROS transformation tree.

tftree = rostf;

Wait for the transformation between the target frame, /camera_depth_frame, and the source
frame, /base_link, to be available. Specify a timeout of 5 seconds.

waitForTransform(tftree,'/camera_depth_frame','/base_link',5);

Get the transformation.

tform = getTransform(tftree,'/camera_depth_frame','/base_link');

When you are finished, disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_48383 with NodeURI http://192.168.17.1:54695/

 waitForTransform

1-305

Input Arguments
tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can create a
transformation tree by calling the rostf function.

targetframe — Target coordinate frame
string scalar | character vector

Target coordinate frame, specified as a string scalar or character vector. You can view the available
frames for transformation by calling tftree.AvailableFrames.

sourceframe — Initial coordinate frame
string scalar | character vector

Initial coordinate frame, specified as a string scalar or character vector. You can view the available
frames for transformation using tftree.AvailableFrames.

timeout — Timeout period
numeric scalar in seconds

Timeout period, specified as a numeric scalar in seconds. If the transformation does not become
available, MATLAB displays an error, but continues running the current program.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
transform | getTransform | receive

1 Functions

1-306

writeBinaryOccupancyGrid
Write values from grid to ROS message

Syntax
writeBinaryOccupancyGrid(msg,map)

Description
writeBinaryOccupancyGrid(msg,map) writes occupancy values and other information to the
ROS message, msg, from the binary occupancy grid, map.

Input Arguments
map — Binary occupancy grid
binaryOccupancyMap object handle

Binary occupancy grid, specified as a object handle. map is converted to a 'nav_msgs/
OccupancyGrid' message on the ROS network. map is an object with a grid of binary values, where
1 indicates an occupied location and 0 indications an unoccupied location.

msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object handle.

Version History
Introduced in R2015a

See Also
Functions
rosReadBinaryOccupancyGrid | rosReadOccupancyMap3D | rosReadOccupancyGrid |
rosWriteOccupancyGrid

 writeBinaryOccupancyGrid

1-307

writeImage
Write MATLAB image to ROS image message

Syntax
writeImage(msg,img)
writeImage(msg,img,alpha)

Description
writeImage(msg,img) converts the MATLAB image, img, to a message object and stores the ROS
compatible image data in the message object, msg. The message must be a 'sensor_msgs/Image'
message. 'sensor_msgs/CompressedImage' messages are not supported. The function does not
perform any color space conversion, so the img input needs to have the encoding that you specify in
the Encoding property of the message.

Note writeImage will be removed. Use rosWriteImage instead. For more information, see “ROS
Message Structure Functions” on page 1-309

writeImage(msg,img,alpha) converts the MATLAB image, img, to a message object. If the image
encoding supports an alpha channel (rgba or bgra family), specify this alpha channel in alpha.
Alternatively, the input image can store the alpha channel as its fourth channel.

Examples

Write Image to Message

Read an image.

image = imread('imageMap.png');

Create a ROS image message. Specify the default encoding for the image. Write the image to the
message.

msg = rosmessage('sensor_msgs/Image');
msg.Encoding = 'rgb8';
writeImage(msg,image);

Input Arguments
msg — ROS image message
Image object handle

'sensor_msgs/Image' ROS image message, specified as an Image object handle. 'sensor_msgs/
Image' image messages are not supported.

1 Functions

1-308

img — Image
grayscale image matrix | RGB image matrix | m-by-n-by-3 array

Image, specified as a matrix representing a grayscale or RGB image or as an m-by-n-by-3 array,
depending on the sensor image.

alpha — Alpha channel
uint8 grayscale image

Alpha channel, specified as a uint8 grayscale image. Alpha must be the same size and data type as
img.

ROS Image Encoding
You must specify the correct encoding of the input image in the Encoding property of the image
message. If you do not specify the image encoding before calling the function, the default encoding,
rgb8, is used (3-channel RGB image with uint8 values). The function does not perform any color
space conversion, so the img input needs to have the encoding that you specify in the Encoding
property of the message.

All encoding types supported for the readImage are also supported in this function. For more
information on supported encoding types and their representations in MATLAB, see readImage.

Bayer-encoded images (bayer_rggb8, bayer_bggr8, bayer_gbrg8, bayer_grbg8, and their 16-
bit equivalents) must be given as 8-bit or 16-bit single-channel images or they do not encode.

Version History
Introduced in R2019b

ROS Message Structure Functions
Not recommended starting in R2021a

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To support message structures as inputs, new functions that operate on specialized ROS messages
have been provided. These new functions are based on the existing object functions of message
objects, but support ROS and ROS 2 message structures as inputs instead of message objects.

The object functions will be removed in a future release.

Message Types Object Function Name New Function Name
Image

CompressedImage

readImage

writeImage

rosReadImage

rosWriteImage

 writeImage

1-309

Message Types Object Function Name New Function Name
LaserScan readCartesian

readScanAngles

lidarScan

plot

rosReadCartesian

rosReadScanAngles

rosReadLidarScan

rosPlot
PointCloud2 apply

readXYZ

readRGB

readAllFieldNames

readField

scatter3

rosApplyTransform

rosReadXYZ

rosReadRGB

rosReadAllFieldNames

rosReadField

rosPlot
Quaternion readQuaternion rosReadQuaternion
OccupancyGrid readBinaryOccupanyGrid

readOccupancyGrid

writeBinaryOccupanyGrid

writeOccupanyGrid

rosReadOccupancyGrid

rosReadBinaryOccupancyGr
id

rosReadOccupancyGrid

rosWriteBinaryOccupancyG
rid

rosWriteOccupancyGrid
Octomap readOccupancyMap3D rosReadOccupancyMap3D
PointStamped

PoseStamped

QuaternionStamped

Vector3Stamped

TransformStamped

apply rosApplyTransform

All messages showdetails rosShowDetails

See Also
rosReadImage | rosWriteImage | readRGB

1 Functions

1-310

writeOccupancyGrid
Write values from grid to ROS message

Syntax
writeOccupancyGrid(msg,map)

Description
writeOccupancyGrid(msg,map) writes occupancy values and other information to the ROS
message, msg, from the occupancy grid, map.

Input Arguments
msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as an OccupancyGrid ROS message object
handle.

map — Occupancy map
occupancyMap object handle

Occupancy map, specified as an occupancyMap object handle.

Version History
Introduced in R2016b

See Also
Functions
rosReadBinaryOccupancyGrid | rosReadOccupancyMap3D | rosReadOccupancyGrid |
rosWriteOccupancyGrid

 writeOccupancyGrid

1-311

Classes

2

BagSelection
Object for storing rosbag selection

Description
The BagSelection object is an index of the messages within a rosbag. You can use it to extract
message data from a rosbag, select messages based on specific criteria, or create a timeseries of
the message properties.

Use rosbag to load a rosbag and create the BagSelection object.

Use select to filter the rosbag by criteria such as time and topic.

Creation

Syntax
bag = rosbag(filename)

bagsel = select(bag)

Description

bag = rosbag(filename) creates an indexable BagSelection object, bag, that contains all the
message indexes from the rosbag at the input path, filename. To access the data, you can call
readMessages or timeseries to extract relevant data.

See rosbag for other syntaxes.

bagsel = select(bag) returns an object, bagsel, that contains all the messages in the
BagSelection object, bag.

This function does not change the contents of the original BagSelection object. The return object,
bagsel, is a new object that contains the specified message selection.

See select for other syntaxes and to filter by criteria such as time and topic.

Properties
FilePath — Absolute path to rosbag file
character vector

This property is read-only.

Absolute path to the rosbag file, specified as a character vector.
Data Types: char

2 Classes

2-2

StartTime — Timestamp of first message in selection
scalar

This property is read-only.

Timestamp of the first message in the selection, specified as a scalar in seconds.
Data Types: double

EndTime — Timestamp of last message in selection
scalar

This property is read-only.

Timestamp of the last message in the selection, specified as a scalar in seconds.
Data Types: double

NumMessages — Number of messages in selection
scalar

This property is read-only.

Number of messages in the selection, specified as a scalar. When you first load a rosbag, this property
contains the number of messages in the rosbag. Once you select a subset of messages with select,
the property shows the number of messages in this subset.
Data Types: double

AvailableTopics — Table of topics in selection
table

This property is read-only.

Table of topics in the selection, specified as a table. Each row in the table lists one topic, the number
of messages for this topic, the message type, and the definition of the type. For example:

 NumMessages MessageType MessageDefinition
 ___________ _________________ ___

 /odom 99 nav_msgs/Odometry '# This represents an estimate of a position and velocity in …'

Data Types: table

AvailableFrames — List of available coordinate frames
cell array of character vectors

This property is read-only.

List of available coordinate frames, returned as a cell array of character vectors. Use canTransform
to check whether specific transformations between frames are available, or getTransform to query
a transformation.
Data Types: cell array

MessageList — List of messages in selection
table

 BagSelection

2-3

This property is read-only.

List of messages in the selection, specified as a table. Each row in the table lists one message.
Data Types: table

Object Functions
canTransform Verify if transformation is available
getTransform Retrieve transformation between two coordinate frames
readMessages Read messages from rosbag
select Select subset of messages in rosbag
timeseries Create time series object for selected message properties

Examples

Create rosbag Selection Using BagSelection Object

Load a rosbag log file and parse out specific messages based on the selected criteria.

Create a BagSelection object of all the messages in the rosbag log file.

bagMsgs = rosbag('ex_multiple_topics.bag');

Select a subset of the messages based on their timestamp and topic.

bagMsgs2 = select(bagMsgs,'Time',...
 [bagMsgs.StartTime bagMsgs.StartTime + 1],'Topic','/odom');

Retrieve the messages in the selection as a cell array.

msgs = readMessages(bagMsgs2);

Return certain message properties as a time series.

ts = timeseries(bagMsgs2,'Pose.Pose.Position.X', ...
 'Twist.Twist.Angular.Y');

Retrieve Information from rosbag

Retrieve information from the rosbag. Specify the full path to the rosbag if it is not already available
on the MATLAB® path.

bagselect = rosbag('ex_multiple_topics.bag');

Select a subset of the messages, filtered by time and topic.

bagselect2 = select(bagselect,'Time',...
 [bagselect.StartTime bagselect.StartTime + 1],'Topic','/odom');

Display rosbag Information from File

To view information about a rosbag log file, use rosbag info filename, where filename is a
rosbag (.bag) file.

2 Classes

2-4

rosbag info 'ex_multiple_topics.bag'

Path: C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\21\tp5760f945\ros-ex32890909\ex_multiple_topics.bag
Version: 2.0
Duration: 2:00s (120s)
Start: Dec 31 1969 19:03:21.34 (201.34)
End: Dec 31 1969 19:05:21.34 (321.34)
Size: 23.6 MB
Messages: 36963
Types: gazebo_msgs/LinkStates [48c080191eb15c41858319b4d8a609c2]
 nav_msgs/Odometry [cd5e73d190d741a2f92e81eda573aca7]
 rosgraph_msgs/Clock [a9c97c1d230cfc112e270351a944ee47]
 sensor_msgs/LaserScan [90c7ef2dc6895d81024acba2ac42f369]
Topics: /clock 12001 msgs : rosgraph_msgs/Clock
 /gazebo/link_states 11999 msgs : gazebo_msgs/LinkStates
 /odom 11998 msgs : nav_msgs/Odometry
 /scan 965 msgs : sensor_msgs/LaserScan

Get Transformations from rosbag File

Get transformations from rosbag (.bag) files by loading the rosbag and checking the available
frames. From these frames, use getTransform to query the transformation between two coordinate
frames.

Load the rosbag.

bag = rosbag('ros_turtlesim.bag');

Get a list of available frames.

frames = bag.AvailableFrames;

Get the latest transformation between two coordinate frames.

tf = getTransform(bag,'world',frames{1});

Check for a transformation available at a specific time and retrieve the transformation. Use
canTransform to check if the transformation is available. Specify the time using rostime.

tfTime = rostime(bag.StartTime + 1);
if (canTransform(bag,'world',frames{1},tfTime))
 tf2 = getTransform(bag,'world',frames{1},tfTime);
end

Read Messages from a rosbag as a Structure

Load the rosbag.

bag = rosbag('ros_turtlesim.bag');

Select a specific topic.

bSel = select(bag,'Topic','/turtle1/pose');

Read messages as a structure. Specify the DataFormat name-value pair when reading the messages.
Inspect the first structure in the returned cell array of structures.

 BagSelection

2-5

msgStructs = readMessages(bSel,'DataFormat','struct');
msgStructs{1}

ans = struct with fields:
 MessageType: 'turtlesim/Pose'
 X: 5.5016
 Y: 6.3965
 Theta: 4.5377
 LinearVelocity: 1
 AngularVelocity: 0

Extract the xy points from the messages and plot the robot trajectory.

Use cellfun to extract all the X and Y fields from the structure. These fields represent the xy
positions of the robot during the rosbag recording.

xPoints = cellfun(@(m) double(m.X),msgStructs);
yPoints = cellfun(@(m) double(m.Y),msgStructs);
plot(xPoints,yPoints)

Version History
Introduced in R2019b

2 Classes

2-6

See Also
rosbag | readMessages | select | canTransform | getTransform | timeseries

Topics
“Work with rosbag Logfiles”
“ROS Log Files (rosbags)”

 BagSelection

2-7

Core
Create ROS Core

Description
The ROS Core encompasses many key components and nodes that are essential for the ROS network.
You must have exactly one ROS core running in the ROS network for nodes to communicate. Using
this class allows the creation of a ROS core in MATLAB. Once the core is created, you can connect to
it by calling rosinit or ros.Node.

Creation

Syntax
core = ros.Core
core = ros.Core(port)

Description

core = ros.Core returns a Core object and starts a ROS core in MATLAB. This ROS core has a
default port of 11311. MATLAB allows the creation of only one core on any given port and displays an
error if another core is detected on the same port.

core = ros.Core(port) starts a ROS core at the specified port, port.

Properties
Port — Network port at which the ROS master is listening
11311 (default) | scalar

This property is read-only.

Network port at which the ROS master is listening, returned as a scalar.

MasterURI — The URI on which the ROS master can be reached
'http://<HOSTNAME>:11311' (default) | character vector

This property is read-only.

The URI on which the ROS master can be reached, returned as a character vector. The MasterURI is
constructed based on the host name of your computer. If your host name is not valid, the IP address
of your first network interface is used.

Examples

2 Classes

2-8

Create ROS Core On Specific Port

Create a ROS core on localhost and port 12000.

core = ros.Core(12000)

Launching ROS Core...
...Done in 3.2917 seconds.

core =
 Core with properties:

 Port: 12000
 MasterURI: 'http://172.30.131.134:12000'

Clear the ROS core to shut down the ROS network.

clear('core')

Version History
Introduced in R2019b

See Also
rosinit | Node

Topics
“Connect to a ROS Network”
“ROS Network Setup”

External Websites
ROS Core

 Core

2-9

https://wiki.ros.org/roscore

CompressedImage
Create compressed image message

Description
The CompressedImage object is an implementation of the sensor_msgs/CompressedImage
message type in ROS. The object contains the compressed image and meta-information about the
message. You can create blank CompressedImage messages and populate them with data, or
subscribe to image messages over the ROS network. To convert the image to a MATLAB image, use
the readImage function.

Only images that are sent through the ROS Image Transport package are supported for conversion to
MATLAB images.

Creation
Syntax
msg = rosmessage('sensor_msgs/CompressedImage')

Description

msg = rosmessage('sensor_msgs/CompressedImage') creates an empty CompressedImage
object. To specify image data, use the msg.Data property. You can also get these image messages off
the ROS network using rossubscriber.

Properties
MessageType — Message type of ROS message
character vector

This property is read-only.

Message type of ROS message, returned as a character vector.
Data Types: char

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId.

Format — Image format
character vector

Image format, specified as a character vector.

2 Classes

2-10

https://wiki.ros.org/image_transport

Example: 'bgr8; jpeg compressed bgr8'

Data — Image data
uint8 array

Image data, specified as a uint8 array.

Object Functions
readImage Convert ROS image data into MATLAB image

Examples

Read and Write CompressedImage Messages

Read and write a sample ROS CompressedImage message by converting it.

Load sample ROS messages and inspect the image message. The imgcomp object is a sample ROS
CompressedImage message object.

exampleHelperROSLoadMessages
imgcomp

imgcomp =
 ROS CompressedImage message with properties:

 MessageType: 'sensor_msgs/CompressedImage'
 Header: [1x1 Header]
 Format: 'bgr8; jpeg compressed bgr8'
 Data: [30376x1 uint8]

 Use showdetails to show the contents of the message

Create a MATLAB image from the CompressedImage message using readImage and display it.

I = readImage(imgcomp);
imshow(I)

 CompressedImage

2-11

Create Blank Compressed Image Message

compImg = rosmessage('sensor_msgs/CompressedImage')

compImg =
 ROS CompressedImage message with properties:

 MessageType: 'sensor_msgs/CompressedImage'
 Header: [1x1 Header]
 Format: ''
 Data: [0x1 uint8]

 Use showdetails to show the contents of the message

Version History
Introduced in R2019b

2 Classes

2-12

See Also
readImage | rosmessage | rossubscriber

Topics
“Work with Specialized ROS Messages”

 CompressedImage

2-13

Image
Create image message

Description
The Image object is an implementation of the sensor_msgs/Image message type in ROS. The object
contains the image and meta-information about the message. You can create blank Image messages
and populate them with data, or subscribe to image messages over the ROS network. To convert the
image to a MATLAB image, use the readImage function.

Creation

Syntax
msg = rosmessage('sensor_msgs/Image')

Description

msg = rosmessage('sensor_msgs/Image') creates an empty Image object. To specify image
data, use the msg.Data property. You can also get these image messages off the ROS network using
rossubscriber.

Properties
MessageType — Message type of ROS message
character vector

This property is read-only.

Message type of ROS message, returned as a character vector.
Data Types: char

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId.

Height — Image height in pixels
scalar

Image height in pixels, specified as a scalar.

Width — Image width in pixels
scalar

2 Classes

2-14

Image width in pixels, specified as a scalar.

Encoding — Image encoding
character vector

Image encoding, specified as a character vector.
Example: 'rgb8'

IsBigendian — Image byte sequence
true | false

Image byte sequence, specified as true or false.

• true —Big endian sequence. Stores the most significant byte in the smallest address.
• false —Little endian sequence. Stores the least significant byte in the smallest address.

Step — Full row length in bytes
integer

Full row length in bytes, specified as an integer. This length depends on the color depth and the pixel
width of the image. For example, an RGB image has 3 bytes per pixel, so an image with width 640 has
a step of 1920.

Data — Image data
uint8 array

Image data, specified as a uint8 array.

Object Functions
readImage Convert ROS image data into MATLAB image
writeImage Write MATLAB image to ROS image message

Examples

Read and Write Image Messages

Read and write a sample ROS Image message by converting it to a MATLAB image. Then, convert a
MATLAB® image to a ROS message.

Load sample ROS messages and inspect the image message data. The img object is a sample ROS
Image message object.

exampleHelperROSLoadMessages
img

img =
 ROS Image message with properties:

 MessageType: 'sensor_msgs/Image'
 Header: [1x1 Header]
 Height: 480
 Width: 640
 Encoding: 'rgb8'

 Image

2-15

 IsBigendian: 0
 Step: 1920
 Data: [921600x1 uint8]

 Use showdetails to show the contents of the message

Create a MATLAB image from the Image message using readImage and display it.

I = readImage(img);
imshow(I)

Create a ROS Image message from a MATLAB image.

imgMsg = rosmessage('sensor_msgs/Image');
imgMsg.Encoding = 'rgb8'; % Specifies Image Encoding Type
writeImage(imgMsg,I)
imgMsg

imgMsg =
 ROS Image message with properties:

 MessageType: 'sensor_msgs/Image'
 Header: [1x1 Header]

2 Classes

2-16

 Height: 480
 Width: 640
 Encoding: 'rgb8'
 IsBigendian: 0
 Step: 1920
 Data: [921600x1 uint8]

 Use showdetails to show the contents of the message

Create Blank Image Message

msg = rosmessage('sensor_msgs/Image')

msg =
 ROS Image message with properties:

 MessageType: 'sensor_msgs/Image'
 Header: [1x1 Header]
 Height: 0
 Width: 0
 Encoding: ''
 IsBigendian: 0
 Step: 0
 Data: [0x1 uint8]

 Use showdetails to show the contents of the message

Version History
Introduced in R2019b

See Also
readImage | writeImage | rosmessage | rossubscriber

Topics
“Work with Specialized ROS Messages”

 Image

2-17

LaserScan
Create laser scan message

Description
The LaserScan object is an implementation of the sensor_msgs/LaserScan message type in ROS.
The object contains meta-information about the message and the laser scan data. You can extract the
ranges and angles using the Ranges property and the readScanAngles function. To access points in
Cartesian coordinates, use readCartesian.

You can also convert this object to a lidarScan object to use with other robotics algorithms such as
matchScans, controllerVFH, or monteCarloLocalization.

Creation

Syntax
scan = rosmessage('sensor_msgs/LaserScan')

Description

scan = rosmessage('sensor_msgs/LaserScan') creates an empty LaserScan object. You can
specify scan info and data using the properties, or you can get these messages off a ROS network
using rossubscriber.

Properties
MessageType — Message type of ROS message
character vector

This property is read-only.

Message type of ROS message, returned as a character vector.
Data Types: char

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId. Timestamp relates to the
acquisition time of the first ray in the scan.

AngleMin — Minimum angle of range data
scalar

2 Classes

2-18

Minimum angle of range data, specified as a scalar in radians. Positive angles are measured from the
forward direction of the robot.

AngleMax — Maximum angle of range data
scalar

Maximum angle of range data, specified as a scalar in radians. Positive angles are measured from the
forward direction of the robot.

AngleIncrement — Angle increment of range data
scalar

Angle increment of range data, specified as a scalar in radians.

TimeIncrement — Time between individual range data points in seconds
scalar

Time between individual range data points in seconds, specified as a scalar.

ScanTime — Time to complete a full scan in seconds
scalar

Time to complete a full scan in seconds, specified as a scalar.

RangeMin — Minimum valid range value
scalar

Minimum valid range value, specified as a scalar.

RangeMax — Maximum valid range value
scalar

Maximum valid range value, specified as a scalar.

Ranges — Range readings from laser scan
vector

Range readings from laser scan, specified as a vector. To get the corresponding angles, use
readScanAngles.

Intensities — Intensity values from range readings
vector

Intensity values from range readings, specified as a vector. If no valid intensity readings are found,
this property is empty.

Object Functions
lidarScan Create object for storing 2-D lidar scan
plot Display laser or lidar scan readings
readCartesian Read laser scan ranges in Cartesian coordinates
readScanAngles Return scan angles for laser scan range readings

Examples

 LaserScan

2-19

Inspect Sample Laser Scan Message

Load, inspect, and display a sample laser scan message.

Create sample messages and inspect the laser scan message data.The scan object is a sample ROS
LaserScan message object.

exampleHelperROSLoadMessages
scan

scan =
 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1x1 Header]
 AngleMin: -0.5467
 AngleMax: 0.5467
 AngleIncrement: 0.0017
 TimeIncrement: 0
 ScanTime: 0.0330
 RangeMin: 0.4500
 RangeMax: 10
 Ranges: [640x1 single]
 Intensities: [0x1 single]

 Use showdetails to show the contents of the message

Get ranges and angles from the object properties. Check that the ranges and angles are the same
size.

ranges = scan.Ranges;
angles = scan.readScanAngles;
size(ranges)

ans = 1×2

 640 1

size(angles)

ans = 1×2

 640 1

plot(scan)

2 Classes

2-20

Create Empty LaserScan Message

scan = rosmessage('sensor_msgs/LaserScan')

scan =
 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1x1 Header]
 AngleMin: 0
 AngleMax: 0
 AngleIncrement: 0
 TimeIncrement: 0
 ScanTime: 0
 RangeMin: 0
 RangeMax: 0
 Ranges: [0x1 single]
 Intensities: [0x1 single]

 Use showdetails to show the contents of the message

 LaserScan

2-21

Version History
Introduced in R2019b

See Also
lidarScan | plot | readCartesian | readScanAngles | showdetails | rosmessage |
rossubscriber

Topics
“Work with Specialized ROS Messages”

2 Classes

2-22

Node
Start ROS node and connect to ROS master

Description
The ros.Node object represents a ROS node in the ROS network. The object enables you to
communicate with the rest of the ROS network. You must create a node before you can use other ROS
functionality, such as publishers, subscribers, and services.

You can create a ROS node using the rosinit function, or by calling ros.Node:

• rosinit — Creates a single ROS node in MATLAB. You can specify an existing ROS master, or the
function creates one for you. The Node object is not visible.

• ros.Node— Creates multiple ROS nodes for use on the same ROS network in MATLAB.

Creation

Syntax
N = ros.Node(Name)
N = ros.Node(Name,Host)
N = ros.Node(Name,Host,Port)
N = ros.Node(Name,MasterURI,Port)
N = ros.Node(___ ,'NodeHost',HostName)

Description

N = ros.Node(Name) initializes the ROS node with Name and tries to connect to the ROS master at
default URI, http://localhost:11311.

N = ros.Node(Name,Host) tries to connect to the ROS master at the specified IP address or host
name, Host using the default port number, 11311.

N = ros.Node(Name,Host,Port)tries to connect to the ROS master with port number, Port.

N = ros.Node(Name,MasterURI,Port) tries to connect to the ROS master at the specified IP
address, MasterURI.

N = ros.Node(___ ,'NodeHost',HostName) specifies the IP address or host name that the node
uses to advertise itself to the ROS network. Examples include "192.168.1.1" or "comp-home". You
can use any of the arguments from the previous syntaxes.

Properties
Name — Name of the node
string scalar | character vector

 Node

2-23

Name of the node, specified as a string scalar or character vector. The node name must be a valid
ROS graph name. See ROS Names.

MasterURI — URI of the ROS master
string scalar | character vector

URI of the ROS master, specified as a string scalar or character vector. The node is connected to the
ROS master with the given URI.

NodeURI — URI for the node
string scalar | character vector

URI for the node, specified as a string scalar or character vector. The node uses this URI to advertise
itself on the ROS network for others to connect to it.

CurrentTime — Current ROS network time
Time object

Current ROS network time, specified as a Time object. For more information, see rostime.

Examples

Create Multiple ROS Nodes

Create multiple ROS nodes. Use the Node object with publishers, subscribers, and other ROS
functionality to specify the node the you are connecting to.

Create a ROS master.

master = ros.Core;

Launching ROS Core...
...Done in 3.8992 seconds.

Initialize multiple nodes.

node1 = ros.Node('/test_node_1');
node2 = ros.Node('/test_node_2');

Use these nodes to perform separate operations and send separate messages. A message published
by node1 can be accessed by a subscriber running in node2.

pub = ros.Publisher(node1,'/chatter','std_msgs/String');
sub = ros.Subscriber(node2,'/chatter','std_msgs/String');

msg = rosmessage('std_msgs/String');
msg.Data = 'Message from Node 1';

Send a message from node1. The subscriber attached to node2 will receive the message.

send(pub,msg) % Sent from node 1
pause(1) % Wait for message to update
sub.LatestMessage

ans =
 ROS String message with properties:

2 Classes

2-24

https://wiki.ros.org/Names

 MessageType: 'std_msgs/String'
 Data: 'Message from Node 1'

 Use showdetails to show the contents of the message

Clear the ROS network of publisher, subscriber, and nodes. Delete the Core object to shut down the
ROS master.

clear('pub','sub','node1','node2')
clear('master')

Connect to Multiple ROS Masters

Connecting to multiple ROS masters is possible using MATLAB®. These separate ROS masters do not
share information and must have different port numbers. Connect ROS nodes to each master based
on how you want to distribute information across the network.

Create two ROS masters on different ports.

m1 = ros.Core; % Default port of 11311

Launching ROS Core...
..Done in 2.7235 seconds.

m2 = ros.Core(12000);

Launching ROS Core...
...Done in 3.2839 seconds.

Connect separate ROS nodes to each ROS master.

node1 = ros.Node('/test_node_1','localhost');
node2 = ros.Node('/test_node_2','localhost',12000);

Clear the ROS nodes. Shut down the ROS masters.

clear('node1','node2')
clear('m1','m2')

Version History
Introduced in R2019b

See Also
rosinit | rosshutdown

Topics
“ROS Network Setup”

External Websites
ROS Nodes

 Node

2-25

https://wiki.ros.org/Nodes

ros2node
Create a ROS 2 node on the specified network

Description
The ros2node object represents a ROS 2 node, and allows you to communicate with the rest of the
ROS 2 network. You have to create a node before you can create publishers and subscribers.

Creation

Syntax
node = ros2node(Name)
node = ros2node(Name,ID)
node = ros2node(___ ,Parameters=params)

Description

node = ros2node(Name) initializes a ROS 2 node with the given Name. The node will be on the
network specified by the domain identification 0, unless otherwise specified by the ROS_DOMAIN_ID
environment variable.

By default the node uses the 'rmw_fastrtps_cpp' ROS middleware (RMW) implementation unless
otherwise specified by the RMW_IMPLEMENTATION environment variable. Set the
RMW_IMPLEMENTATION environment variable before creating the ros2node object. For example,
setenv('RMW_IMPLEMENTATION','rmw_cyclonedds_cpp') sets the RMW implementation to
'rmw_cyclonedds_cpp'. For more information on RMW implementations see “Switching Between
ROS Middleware Implementations”.

node = ros2node(Name,ID) will initialize the ROS 2 node with Name and connect to the network
using domain ID.

node = ros2node(___ ,Parameters=params) specifies parameters to be declared during the
node startup using the name-value argument Parameters, using any of the arguments from the
previous syntaxes. Specify params as a structure that contains the parameters as its fields. Each
parameter in params can be a scalar or an array of uint8, int64, logical, string, char or
double datatype.

Input Arguments

Name — Name of the node
string | char array

The name of the node on the ROS 2 network.

2 Classes

2-26

Note In ROS 1, node names are unique and this is being enforced by shutting down existing nodes
when a new node with the same name is started. In ROS 2, the uniqueness of node names is not
enforced. When creating a new node, use ros2 function to list existing nodes.

ID — Domain identification of the network
non-negative scalar integer

The domain identification of the ROS 2 network.
Data Types: double

Properties
Name — Name of the node
char array

This property is read-only.

The name of the node on the ROS 2 network.
Example: "/node_1"
Data Types: char

ID — Domain identification of the network
non-negative scalar integer between 0 and 232

This property is read-only.

The domain identification of the ROS 2 network, specified as a non-negative scalar integer between 0
and 232.
Example: 2
Data Types: double

Object Functions
delete Remove reference to ROS 2 node
getParameter Get value of parameter declared in ROS 2 node
setParameter Set value of parameter declared in ROS 2 node

Examples

Initialize a Node on Default ROS 2 Network

Initialize the node, '/node_1_default', on the default ROS 2 network.

node1 = ros2node('node_1_default')

node1 =
 ros2node with properties:

 Name: '/node_1_default'

 ros2node

2-27

 ID: 0

Initialize a Node on Specified ROS 2 Network

Initialize the node, '/node_2_specified', on the ROS 2 network identified with domain 2.

node2 = ros2node('node_2_specified', 2)

node2 =
 ros2node with properties:

 Name: '/node_2_specified'
 ID: 2

Get and Set Parameters for ROS 2 Nodes

Create a structure that contains all the parameters for the ROS 2 node.

nodeParams.my_double = 2.0;
nodeParams.my_namespace.my_int = int64(1);
nodeParams.my_double_array = [1.1 2.2 3.3];
nodeParams.my_string = "Keyparams";

Create a ROS 2 node and specify nodeParams as the parameters.

node1 = ros2node("/node1",Parameters=nodeParams);

Set the parameter my_double to a new value.

setParameter(node1,"my_double",5.2);

Obtain the new value of the parameter my_double.

doubleValue = getParameter(node1,"my_double")

doubleValue = 5.2000

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

2 Classes

2-28

• Only one ros2node object is allowed in a single MATLAB function. You can write individual
MATLAB functions for each additional ros2node.

See Also
ros2publisher | ros2subscriber | ros2param

Topics
“Get Started with ROS 2”
“ROS Toolbox System Requirements”
“Switching Between ROS Middleware Implementations”

 ros2node

2-29

OccupancyGrid
Create occupancy grid message

Description
The OccupancyGrid object is an implementation of the nav_msgs/OccupancyGrid message type
in ROS. The object contains meta-information about the message and the occupancy grid data.

To create a binaryOccupancyMap object from a ROS message, use the
readBinaryOccupancyGrid function.

To create an occupancyMap object , use the readOccupancyGrid function.

Creation
Syntax
msg = rosmessage('nav_msgs/OccupancyGrid');

Description

msg = rosmessage('nav_msgs/OccupancyGrid'); creates an empty OccupancyGrid object.
To specify map information and data, use the map.Info and msg.Data properties. You can also get
the occupancy grid messages off the ROS network using rossubscriber.

Properties
MessageType — Message type of ROS message
character vector

This property is read-only.

Message type of ROS message, returned as a character vector.
Data Types: char

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId.

Info — Information about the map
MapMetaData object

Information about the map, specified as a MapMetaData object. It contains the width, height,
resolution, and origin of the map.

2 Classes

2-30

Data — Map data
vector

Map data, specified as a vector. The vector is all the occupancy data from each grid location in a
single 1-D array.

Object Functions
readOccupancyGrid Read occupancy grid message
readBinaryOccupancyGrid Read binary occupancy grid
writeBinaryOccupancyGrid Write values from grid to ROS message
writeOccupancyGrid Write values from grid to ROS message

Examples

Create Occupancy Grid from 2-D Map

Load two maps, simpleMap and complexMap, as logical matrices. Use whos to display the map.

load exampleMaps.mat
whos *Map*

 Name Size Bytes Class Attributes

 complexMap 41x52 2132 logical
 emptyMap 26x27 702 logical
 simpleMap 26x27 702 logical
 ternaryMap 501x501 2008008 double

Create a ROS message from simpleMap using a binaryOccupancyMap object. Write the
OccupancyGrid message using writeBinaryOccupancyGrid.

bogMap = binaryOccupancyMap(double(simpleMap));
mapMsg = rosmessage('nav_msgs/OccupancyGrid');
writeBinaryOccupancyGrid(mapMsg,bogMap)
mapMsg

mapMsg =
 ROS OccupancyGrid message with properties:

 MessageType: 'nav_msgs/OccupancyGrid'
 Header: [1x1 Header]
 Info: [1x1 MapMetaData]
 Data: [702x1 int8]

 Use showdetails to show the contents of the message

Use readBinaryOccupancyGrid to convert the ROS message to a binaryOccupancyMap object.
Use the object function show to display the map.

bogMap2 = readBinaryOccupancyGrid(mapMsg);
show(bogMap2);

 OccupancyGrid

2-31

Version History
Introduced in R2019b

See Also
Objects
occupancyMap | binaryOccupancyMap

Functions
readBinaryOccupancyGrid | readOccupancyGrid | writeBinaryOccupancyGrid |
writeOccupancyGrid

2 Classes

2-32

PointCloud2
Access point cloud messages

Description
The PointCloud2 object is an implementation of the sensor_msgs/PointCloud2 message type in
ROS. The object contains meta-information about the message and the point cloud data. To access the
actual data, use readXYZ to get the point coordinates and readRGB to get the color information, if
available.

Creation

Syntax
ptcloud = rosmessage('sensor_msgs/PointCloud2')

Description

ptcloud = rosmessage('sensor_msgs/PointCloud2') creates an empty PointCloud2 object.
To specify point cloud data, use the ptcloud.Data property. You can also get point cloud data
messages off the ROS network using rossubscriber.

Properties
PreserveStructureOnRead — Preserve the shape of point cloud matrix
false (default) | true

This property is read-only.

Preserve the shape of point cloud matrix, specified as false or true. When the property is true, the
output data from readXYZ and readRGB are returned as matrices instead of vectors.

MessageType — Message type of ROS message
character vector

This property is read-only.

Message type of ROS message, returned as a character vector.
Data Types: char

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId.

 PointCloud2

2-33

Height — Point cloud height in pixels
integer

Point cloud height in pixels, specified as an integer.

Width — Point cloud width in pixels
integer

Point cloud width in pixels, specified as an integer.

IsBigendian — Image byte sequence
true | false

Image byte sequence, specified as true or false.

• true —Big endian sequence. Stores the most significant byte in the smallest address.
• false —Little endian sequence. Stores the least significant byte in the smallest address.

PointStep — Length of a point in bytes
integer

Length of a point in bytes, specified as an integer.

RowStep — Full row length in bytes
integer

Full row length in bytes, specified as an integer. The row length equals the PointStep property
multiplied by the Width property.

Data — Point cloud data
uint8 array

Point cloud data, specified as a uint8 array. To access the data, use the “Object Functions” on page
2-34.

Object Functions
readAllFieldNames Get all available field names from ROS point cloud
readField Read point cloud data based on field name
readRGB Extract RGB values from point cloud data
readXYZ Extract XYZ coordinates from point cloud data
scatter3 Display point cloud in scatter plot
showdetails Display all ROS message contents

Examples

Inspect Point Cloud Image

Access and visualize the data inside a point cloud message.

Create sample ROS messages and inspect a point cloud image. ptcloud is a sample ROS
PointCloud2 message object.

2 Classes

2-34

exampleHelperROSLoadMessages
ptcloud

ptcloud =
 ROS PointCloud2 message with properties:

 PreserveStructureOnRead: 0
 MessageType: 'sensor_msgs/PointCloud2'
 Header: [1x1 Header]
 Fields: [4x1 PointField]
 Height: 480
 Width: 640
 IsBigendian: 0
 PointStep: 32
 RowStep: 20480
 Data: [9830400x1 uint8]
 IsDense: 0

 Use showdetails to show the contents of the message

Get RGB info and xyz-coordinates from the point cloud using readXYZ and readRGB.

xyz = readXYZ(ptcloud);
rgb = readRGB(ptcloud);

Display the point cloud in a figure using scatter3.

scatter3(ptcloud)

 PointCloud2

2-35

Create pointCloud Object Using Point Cloud Message

Convert a ROS Toolbox™ point cloud message into a Computer Vision System Toolbox™ pointCloud
object.

Load sample messages.

exampleHelperROSLoadMessages

Convert a ptcloud message to the pointCloud object.

pcobj = pointCloud(readXYZ(ptcloud),'Color',uint8(255*readRGB(ptcloud)))

pcobj =
 pointCloud with properties:

 Location: [307200x3 single]
 Count: 307200
 XLimits: [-1.8147 1.1945]
 YLimits: [-1.3714 0.8812]
 ZLimits: [1.4190 3.3410]
 Color: [307200x3 uint8]
 Normal: []
 Intensity: []

2 Classes

2-36

Version History
Introduced in R2019b

See Also
readAllFieldNames | readField | readRGB | readXYZ | scatter3 | showdetails | rosmessage
| rossubscriber

Topics
“Work with Specialized ROS Messages”

 PointCloud2

2-37

rosdevice
Connect to remote ROS device

Description
The rosdevice object is used to create a connection with a ROS device. The ROS device can be the
local device or a remote device. The object contains the necessary login information and other
parameters of the ROS distribution. Once a connection is made using rosdevice, you can run and
stop a ROS core or ROS nodes and check the status of the ROS network. Before running ROS nodes,
you must connect MATLAB to the ROS network using the rosinit function.

You can deploy ROS nodes to a ROS device using Simulink models. For an example, see “Generate a
Standalone ROS Node from Simulink”.

You can also deploy ROS nodes generated from MATLAB code.

Note To connect to a remote ROS device, an SSH server must be installed on the device. To connect
to the local host, an SSH server installation on the local device is not required if you specify the
deviceAddress as 'localhost'. Alternatively, if you specify the deviceAddress as
'127.0.0.1' or as the host name referring to the local device, then an SSH server must be installed
on the local device.

Creation

Syntax
device = rosdevice(deviceAddress,username,password)
device = rosdevice
device = rosdevice('localhost')

Description

device = rosdevice(deviceAddress,username,password) creates a rosdevice object
connected to the ROS device at the specified address and with the specified user name and password.

device = rosdevice creates a rosdevice object connected to a ROS device using the saved
values for deviceAddress, username, and password.

device = rosdevice('localhost') creates a rosdevice object connected to the local device.

Properties
DeviceAddress — Host name or IP address of the ROS device
character vector

This property is read-only.

2 Classes

2-38

Host name or IP address of the ROS device, specified as a character vector.
Example: '192.168.1.10'
Example: 'samplehost.foo.com'

UserName — User name used to connect to the ROS device
character vector

This property is read-only.

User name used to connect to the ROS device, specified as a character vector.
Example: 'user'

ROSFolder — Location of ROS installation
character vector

Location of ROS installation, specified as a character vector. If a folder is not specified, MATLAB tries
to determine the correct folder for you. When you deploy a ROS node, set this value from Simulink in
the Configuration Parameters dialog box, under Hardware Implementation.
Example: '/opt/ros/hydro'

CatkinWorkspace — Catkin folder where models are deployed on device
character vector

Catkin folder where models are deployed on device, specified as a character vector. When you deploy
a ROS node, set this value from Simulink in the Configuration Parameters dialog box, under
Hardware Implementation.
Example: '~/catkin_ws_test'

AvailableNodes — Nodes available to run on ROS device
cell array of character vectors

This property is read-only.

Nodes available to run on a ROS device, returned as a cell array of character vectors. Nodes are only
listed if they are part of the CatkinWorkspace and have been deployed to the device using Simulink.
Example: {'robotcontroller','publishernode'}

Object Functions
runNode Start ROS or ROS 2 node
stopNode Stop ROS or ROS 2 node
isNodeRunning Determine if ROS or ROS 2 node is running
runCore Start ROS core
stopCore Stop ROS core
isCoreRunning Determine if ROS core is running
system Execute system command on device
putFile Copy file to device
getFile Get file from device
deleteFile Delete file from device
dir List folder contents on device
openShell Open interactive command shell to device

 rosdevice

2-39

Examples

Run ROS Core on ROS Device

Connect to a remote ROS device and start a ROS core. The ROS core is needed to run ROS nodes to
communicate via a ROS network. You can run and stop a ROS core or node and check their status
using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of your specific
ROS device. The device contains information about the ROS device, including the available ROS
nodes that can be run using runNode.

ipaddress = '192.168.203.131';
d = rosdevice(ipaddress,'user','password')

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.131'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws'
 AvailableNodes: {'voxel_grid_filter_sl'}

Run a ROS core and check if it is running.

runCore(d)

Another roscore / ROS master is already running on the ROS device. Use the 'stopCore' function to stop it.

running = isCoreRunning(d)

running = logical
 1

Stop the ROS core and confirm that it is no longer running.

stopCore(d)
pause(2)
running = isCoreRunning(d)

running = logical
 0

Run ROS Node on ROS Device

Connect to a remote ROS device and start a ROS node. Run a ROS core so that ROS nodes can
communicate via a ROS network. You can run and stop a ROS core or node and check their status
using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of your specific
ROS device. The device already contains the available ROS nodes that can be run using runNode.

2 Classes

2-40

ipaddress = '192.168.203.129';
d = rosdevice(ipaddress,'user','password');
d.ROSFolder = '/opt/ros/indigo';
d.CatkinWorkspace = '~/catkin_ws_test'

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.129'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. Connect MATLAB® to the ROS master using rosinit. This core enables you to run
ROS nodes on your ROS device.

runCore(d)
rosinit(d.DeviceAddress,11311)

Initializing global node /matlab_global_node_84497 with NodeURI http://192.168.203.1:56034/

Check the available ROS nodes on the connected ROS device. These nodes listed were generated
from Simulink® models following the process in the “Get Started with ROS in Simulink” example.

d.AvailableNodes

ans = 1×2 cell
 {'robotcontroller'} {'robotcontroller2'}

Run a ROS node and specify the node name. Check if the node is running.

runNode(d,'RobotController')
running = isNodeRunning(d,'RobotController')

running = logical
 1

Stop the ROS node. Disconnect from the ROS network. Stop the ROS core.

stopNode(d,'RobotController')
rosshutdown

Shutting down global node /matlab_global_node_84497 with NodeURI http://192.168.203.1:56034/

stopCore(d)

Run Multiple ROS Nodes

Run multiple ROS nodes on a connected ROS device. ROS nodes can be generated using Simulink®
models to perform different tasks on the ROS network. These nodes are then deployed on a ROS
device and can be run independently of Simulink®.

 rosdevice

2-41

This example uses two different Simulink models that have been deployed as ROS nodes. See
“Generate a Standalone ROS Node from Simulink” and follow the instructions to generate and deploy
a ROS node. Do this twice and name them 'robotcontroller' and 'robotcontroller2'. The
'robotcontroller' node sends velocity commands to a robot to navigate it to a given point. The
'robotcontroller2' node uses the same model, but doubles the linear velocity to drive the robot
faster.

Create a connection to a ROS device. Specify the address, user name, and password of your specific
ROS device. The device contains information about the ROS device, including the available ROS
nodes that can be run using runNode.

ipaddress = '192.168.203.129';
d = rosdevice(ipaddress,'user','password')

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.129'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws'
 AvailableNodes: {0×1 cell}

d.CatkinWorkspace = '~/catkin_ws_test'

d =
 rosdevice with properties:

 DeviceAddress: '192.168.203.129'
 Username: 'user'
 ROSFolder: '/opt/ros/indigo'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. The ROS Core is the master enables you to run ROS nodes on your ROS device.
Connect MATLAB® to the ROS master using rosinit. For this example, the port is set to 11311.
rosinit can automatically select a port for you without specifying this input.

runCore(d)
rosinit(d.DeviceAddress,11311)

Initializing global node /matlab_global_node_66434 with NodeURI http://192.168.203.1:59395/

Check the available ROS nodes on the connected ROS device. The nodes listed in this example were
generated from Simulink® models following the process in the “Generate a Standalone ROS Node
from Simulink” example. Two separate nodes are generated, 'robotcontroller' and
'robotcontroller2', which have the linear velocity set to 1 and 2 in the model respectively.

d.AvailableNodes

ans = 1×2 cell
 {'robotcontroller'} {'robotcontroller2'}

2 Classes

2-42

Start up the Robot Simulator using ExampleHelperSimulinkRobotROS. This simulator
automatically connects to the ROS master on the ROS device. You will use this simulator to run a ROS
node and control the robot.

sim = ExampleHelperSimulinkRobotROS;

Run a ROS node, specifying the node name. The 'robotcontroller' node commands the robot to a
specific location ([-10 10]). Wait to see the robot drive.

runNode(d,'robotcontroller')
pause(10)

 rosdevice

2-43

Reset the Robot Simulator to reset the robot position. Alternatively, click Reset Simulation. Because
the node is still running, the robot continues back to the specific location. To stop sending commands,
stop the node.

resetSimulation(sim.Simulator)
pause(5)

2 Classes

2-44

stopNode(d,'robotcontroller')

Run the 'robotcontroller2' node. This model drives the robot with twice the linear velocity.
Reset the robot position. Wait to see the robot drive. You should see a wider turn due to the increased
velocity.

runNode(d,'robotcontroller2')
resetSimulation(sim.Simulator)
pause(10)

 rosdevice

2-45

Close the simulator. Stop the ROS node. Disconnect from the ROS network and stop the ROS core.

close
stopNode(d,'robotcontroller2')
rosshutdown

Shutting down global node /matlab_global_node_66434 with NodeURI http://192.168.203.1:59395/

stopCore(d)

Limitations
• You cannot change the ROSFolder property when connected to local host. For local host

connections, it will always point to the ROS folder within MATLAB installation.

Version History
Introduced in R2019b

See Also
runNode | stopNode | runCore | isNodeRunning

2 Classes

2-46

Topics
“Generate a Standalone ROS Node from Simulink”

 rosdevice

2-47

ros2device
Connect to remote ROS 2 device

Description
The ros2device object creates a connection with a ROS 2 device. The ROS 2 device can be the local
device or a remote device. The object contains the necessary login information and other parameters
of the ROS 2 distribution. Once you have made a connection using ros2device, you can run and
stop ROS 2 nodes.

You can deploy ROS 2 nodes to a ROS 2 device using Simulink models. For an example, see “Generate
a Standalone ROS 2 Node from Simulink”

You can also deploy ROS 2 nodes generated from MATLAB code.

.

Note To connect to a ROS 2 device, an SSH server must be installed on the device. To connect to the
local host, an SSH server installation on the local device is not required if you specify the
deviceAddress as 'localhost'. Alternatively, if you specify the deviceAddress as
'127.0.0.1' or as the host name referring to the local device, then an SSH server must be installed
on the local device.

Creation
Syntax
device = ros2device(deviceAddress,username,password)
device = ros2device
device = ros2device('localhost')

Description

device = ros2device(deviceAddress,username,password) creates a ros2device object
connected to the ROS 2 device at the specified address and with the specified user name and
password.

device = ros2device creates a ros2device object connected to a ROS 2 device using the saved
values for deviceAddress, username, and password.

device = ros2device('localhost') creates a ros2device object connected to the local
device.

Properties
DeviceAddress — Host name or IP address of ROS 2 device
character vector

2 Classes

2-48

This property is read-only.

Host name or IP address of ROS 2 device, specified as a character vector.
Example: '192.168.1.10'
Example: 'samplehost.foo.com'

UserName — User name used to connect to device
character vector

This property is read-only.

User name used to connect to ROS 2 device, specified as a character vector.
Example: 'user'

ROS2Folder — Location of ROS 2 installation
character vector

Location of the ROS 2 installation, specified as a character vector. If you do not specify a folder,
MATLAB tries to determine the correct folder for you. When you deploy a ROS 2 node, set this value
from Simulink in the Configuration Parameters dialog box, under Hardware Implementation.
Example: '/opt/ros/foxy'

ROS2Workspace — ROS 2 project folder where models are deployed on device
character vector

ROS 2 project folder where models are deployed on device, specified as a character vector. When you
deploy a ROS 2 node, set this value from Simulink in the Configuration Parameters dialog box, under
Hardware Implementation.
Example: '~/ros2_ws_test'

AvailableNodes — Nodes available to run on ROS 2 device
cell array of character vectors

This property is read-only.

Nodes available to run on a ROS 2 device, returned as a cell array of character vectors. Nodes are
only listed if they are part of the ROS2Workspace and have been deployed to the device using
Simulink.
Example: {'robotcontroller','publishernode'}

Object Functions
runNode Start ROS or ROS 2 node
stopNode Stop ROS or ROS 2 node
isNodeRunning Determine if ROS or ROS 2 node is running
system Execute system command on device
putFile Copy file to device
getFile Get file from device
deleteFile Delete file from device
dir List folder contents on device
openShell Open interactive command shell to device

 ros2device

2-49

Examples

Run a ROS 2 Node on Remote Device

Connect to a remote device and start a ROS 2 node using a ros2device object. Create a
ros2device object by specifying the address, user name, and password of the remote device.

ipaddress = '192.168.203.131';
device = ros2device(ipaddress,'user','password');
device.ROS2Folder = '/opt/ros/foxy';
device.ROS2Workspace = '~/ros2_ws_test';

The ros2device object also contains information about the available ROS nodes. Check the
available ROS 2 nodes on the connected device.

device.AvailableNodes

To execute the node on 'rmw_cyclonedds_cpp' ROS middleware set the RMW_IMPLEMENTATION
environment variable using setenv.

setenv("RMW_IMPLEMENTATION","rmw_cyclonedds_cpp")

Use the runNode object function to run a ROS 2 node on the remote device, and then check that if
the node is running.

runNode(device,'ros2FeedbackControlExample')
isNodeRunning(device,'ros2FeedbackControlExample')

Stop the ROS 2 node.

stopNode(device,'ros2FeedbackControlExample')

Limitations
• You cannot change the ROS2Folder property when connected to local host. For local host

connections, it will always point to the ROS 2 folder within MATLAB installation.

Version History
Introduced in R2021a

See Also
runNode | stopNode | isNodeRunning

Topics
“Generate a Standalone ROS 2 Node from Simulink”

2 Classes

2-50

ros2svcclient
Connect to ROS 2 service server

Description
Use ros2svcclient to create a ROS 2 service client object. This service client uses a connection to
send requests to, and receive responses from, a ROS 2 service server. For more information, see “Call
and Provide ROS 2 Services”.

Creation

Syntax
client = ros2svcclient(node,servicename,servicetype)
client = ros2svcclient(___ ,Name=Value)

[client,reqmsg] = ros2svcclient(___)

Description

client = ros2svcclient(node,servicename,servicetype) creates a service client of the
specified servicetype regardless of whether a service server offering servicename is available. It
attaches the client to the ROS 2 node specified by the ros2node object, node.

client = ros2svcclient(___ ,Name=Value) sets the rest of the properties on page 2-51
based on the additional options specified by one or more Name=Value pair arguments, using the
arguments from the previous syntax.

[client,reqmsg] = ros2svcclient(___) returns a new service request message in reqmsg,
using any of the arguments from previous syntaxes. The message type of reqmsg is determined by
the input service type. The message is initialized with default values. You can also create the request
message using ros2message.

Properties
ServiceName — Name of the service
string scalar | character vector

This property is read-only.

Name of the service, specified as a string scalar or character vector.
Example: "/gazebo/get_model_state"

ServiceType — Type of service
string scalar | character vector

This property is read-only.

 ros2svcclient

2-51

Type of service, specified as a string scalar or character vector.
Example: "gazebo_msgs/GetModelState"

History — Mode of storing requests in the queue
"keeplast" (default) | "keepall"

This property is read-only.

Mode of storing requests in the queue, specified as a string or character vector. If the queue fills with
requests waiting to be processed, then old requests will be dropped to make room for new. When set
to "keeplast", the queue stores the number of requests set by the Depth property. Otherwise,
when set to "keepall", the queue stores all requests up to the MATLAB resource limits.
Example: "keeplast"
Data Types: char | string

Depth — Size of the request queue
10 (default) | non-negative scalar integer

This property is read-only.

Size of the request queue in number of requests stored in the queue, specified as a non-negative
scalar integer. This only applies when History is set to "keeplast" or Durability is set to
"transientlocal".
Example: 42
Data Types: double

Reliability — Delivery guarantee of request
"reliable" (default) | "besteffort"

This property is read-only.

Requirement on delivery guarantee of request, specified as a string or character vector. If
"reliable", then delivery is guaranteed, but may retry calling multiple times. If "besteffort",
then attempt delivery and do not retry. "reliable" setting is recommended for services.

Note The Reliability and Durability quality of service settings must be compatible between
service servers and clients for a connection to be made.

Example: "reliable"
Data Types: char | string

Durability — Persistence of the requests
"volatile" (default) | "transientlocal"

This property is read-only.

Requirement on persistence of the requests, specified as a string or character vector. If "volatile",
then requests do not persist. If "transientlocal", then all recently sent requests persist, up to the
number specified by Depth. "volatile" setting is recommended for services.

2 Classes

2-52

Note The Reliability and Durability quality of service settings must be compatible between
service servers and clients for a connection to be made.

Example: "volatile"
Data Types: char | string

Object Functions
ros2message Create ROS 2 message structures
call Call ROS or ROS 2 service server and receive a response
isServerAvailable Determine if ROS or ROS 2 service server is available
waitForServer Wait for ROS or ROS 2 service server to start

Examples

Call ROS 2 Service Client With a Custom Callback Function

Create a sample ROS 2 network with two nodes.

node_1 = ros2node('node_1_service_client');
node_2 = ros2node('node_2_service_client');

Set up a service server and attach it to a ROS 2 node. Specify the callback function flipstring,
which flips the input string. The callback function is defined at the end of this example.

server = ros2svcserver(node_1,'/test','test_msgs/BasicTypes',@flipString);

Set up a service client of the same service type and attach it to a different node.

client = ros2svcclient(node_2,'/test','test_msgs/BasicTypes');

Wait for the service client to connect to the server.

[connectionStatus,connectionStatustext] = waitForServer(client)

connectionStatus = logical
 1

connectionStatustext =
'success'

Create a request message based on the client. Assign the string to the corresponding field in the
message, string_value.

request = ros2message(client);
request.string_value = 'hello world';

Check whether the service server is available. If it is, send a service request and wait for a response.
Specify that the service waits 3 seconds for a response.

if(isServerAvailable(client))
 response = call(client,request,'Timeout',3);
end

 ros2svcclient

2-53

The response is a flipped string from the request message which you see in the string_value field.

response.string_value

ans =
'dlrow olleh'

If the call function above fails, it results in an error. Instead of an error, if you would prefer to react
to a call failure using conditionals, return the status and statustext outputs from the call
function. The status output indicates if the call succeeded, while statustext provides additional
information.

numCallFailures = 0;
[response,status,statustext] = call(client,request,"Timeout",3);
if ~status
 numCallFailures = numCallFailues + 1;
 fprintf("Call failure number %d. Error cause: %s\n",numCallFailures,statustext)
else
 disp(response.string_value)
end

dlrow olleh

The callback function used to flip the string is defined below.

function resp = flipString(req,resp)
% FLIPSTRING Reverses the order of a string in REQ and returns it in RESP.
resp.string_value = fliplr(req.string_value);
end

Tips
• ROS 2 service servers cannot communicate errors in callback execution directly to clients. In such

situations, the servers only return the default response without any indication of failure. Hence, it
is recommended to use try-catch blocks within the callback function, and set specific fields in the
response message to communicate the success/failure of the callback execution on the server side.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• ServiceType argument must be specified.
• Syntax with multiple output arguments is not supported.
• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

2 Classes

2-54

See Also
ros2svcserver | ros2

Topics
“Call and Provide ROS 2 Services”

 ros2svcclient

2-55

ros2svcserver
Create ROS 2 service server

Description
Use ros2svcserver to create a ROS 2 service server that can receive requests from, and send
responses to, a ROS 2 service client.

When you create the service server, it registers itself with the ROS 2 network. When you create a
service client, it establishes a connection to the server. The connection persists while both client and
server exist and can reach each other. To get a list of services, or to get information about a
particular service that is available on the current ROS 2 network, use the ros2 function.

The service has an associated message type that contains a pair of messages: one for the request and
one for the response. The service server receives a request, constructs an appropriate response
based on a callback function, and returns it to the client. The behavior of the service server is
inherently asynchronous because it becomes active only when a service client connects to the ROS 2
network and issues a call. For more information, see “Call and Provide ROS 2 Services”.

Creation

Syntax
server = ros2svcserver(node,servicename,servicetype,callback)
server = ros2svcserver(___ ,Name=Value)

Description

server = ros2svcserver(node,servicename,servicetype,callback) creates a service
server of the specified servicetype available in the ROS 2 network under the name servicename.
It attaches the server to the ROS 2 node specified by the ros2node object, node. It also specifies the
callback function, which is set to the NewRequestFcn property. The input arguments
servicename and servicetype, are set to the ServiceType and ServiceName properties,
respectively.

server = ros2svcserver(___ ,Name=Value) sets the rest of the properties on page 2-56
based on the additional options specified by one or more Name=Value pair arguments, using the
arguments from the previous syntax.

Properties
ServiceName — Name of the service
string scalar | character vector

This property is read-only.

Name of the service, specified as a string scalar or character vector.

2 Classes

2-56

Example: "/gazebo/get_model_state"

ServiceType — Type of service
string scalar | character vector

This property is read-only.

Type of service, specified as a string scalar or character vector.
Example: "gazebo_msgs/GetModelState"

NewRequestFcn — Callback property
function handle | cell array

Callback property, specified as a function handle or cell array. In the first element of the cell array,
specify either a function handle, string scalar, or character vector representing a function name. In
subsequent elements, specify user data.

The service callback function requires at least two input arguments with one output. The first
argument, reqMsg, is the request message object sent by the service client. The second argument is
the default response message object, defaultRespMsg. The callback returns a response message,
response, based on the input request message and sends it back to the service client. Use the
default response message as a starting point for constructing the request message. The function
header for the callback is:

function response = serviceCallback(reqMsg,defaultRespMsg)

Specify the NewRequestFcn property as:

server.NewRequestFcn = @serviceCallback;

When setting the callback, you pass additional parameters to the callback function by including both
the callback function and the parameters as elements of a cell array. The function header for the
callback is:

function response = serviceCallback(reqMsg,defaultRespMsg,userData)

Specify the NewRequestFcn property as:

server.NewRequestFcn = {@serviceCallback,userData};

History — Mode of storing requests in the queue
"keeplast" (default) | "keepall"

This property is read-only.

Mode of storing requests in the queue, specified as a string or character vector. If the queue fills with
requests waiting to be processed, then old requests will be dropped to make room for new. When set
to "keeplast", the queue stores the number of requests set by the Depth property. Otherwise,
when set to "keepall", the queue stores all requests up to the MATLAB resource limits.
Example: "keeplast"
Data Types: char | string

Depth — Size of the request queue
10 (default) | non-negative scalar integer

 ros2svcserver

2-57

This property is read-only.

Size of the request queue in number of requests stored in the queue, specified as a non-negative
scalar integer. This only applies when History is set to "keeplast".
Example: 42
Data Types: double

Reliability — Delivery guarantee of request and response
"reliable" (default) | "besteffort"

This property is read-only.

Requirement on delivery guarantee of request and response, specified as a string or character vector.
If "reliable", then delivery is guaranteed, but may retry multiple times. If "besteffort", then
attempt delivery and do not retry. "reliable" setting is recommended for services.

Note The Reliability and Durability quality of service settings must be compatible between
service servers and clients for a connection to be made.

Example: "reliable"
Data Types: char | string

Durability — Persistence of the client
"volatile" (default) | "transientlocal"

This property is read-only.

Requirement on persistence of the client, specified as a string or character vector. If "volatile",
then requests are not required to persist. If "transientlocal", then the server will require clients
to persist and receive responses for the number of previous requests specified by Depth.
"volatile" setting is recommended to prevent servers from receiving out of date requests in the
event of a server restart.

Note The Reliability and Durability quality of service settings must be compatible between
service servers and clients for a connection to be made.

Example: "volatile"
Data Types: char | string

Object Functions
ros2message Create ROS 2 message structures

Examples

Call ROS 2 Service Client With a Custom Callback Function

Create a sample ROS 2 network with two nodes.

2 Classes

2-58

node_1 = ros2node('node_1_service_client');
node_2 = ros2node('node_2_service_client');

Set up a service server and attach it to a ROS 2 node. Specify the callback function flipstring,
which flips the input string. The callback function is defined at the end of this example.

server = ros2svcserver(node_1,'/test','test_msgs/BasicTypes',@flipString);

Set up a service client of the same service type and attach it to a different node.

client = ros2svcclient(node_2,'/test','test_msgs/BasicTypes');

Wait for the service client to connect to the server.

[connectionStatus,connectionStatustext] = waitForServer(client)

connectionStatus = logical
 1

connectionStatustext =
'success'

Create a request message based on the client. Assign the string to the corresponding field in the
message, string_value.

request = ros2message(client);
request.string_value = 'hello world';

Check whether the service server is available. If it is, send a service request and wait for a response.
Specify that the service waits 3 seconds for a response.

if(isServerAvailable(client))
 response = call(client,request,'Timeout',3);
end

The response is a flipped string from the request message which you see in the string_value field.

response.string_value

ans =
'dlrow olleh'

If the call function above fails, it results in an error. Instead of an error, if you would prefer to react
to a call failure using conditionals, return the status and statustext outputs from the call
function. The status output indicates if the call succeeded, while statustext provides additional
information.

numCallFailures = 0;
[response,status,statustext] = call(client,request,"Timeout",3);
if ~status
 numCallFailures = numCallFailues + 1;
 fprintf("Call failure number %d. Error cause: %s\n",numCallFailures,statustext)
else
 disp(response.string_value)
end

dlrow olleh

 ros2svcserver

2-59

The callback function used to flip the string is defined below.

function resp = flipString(req,resp)
% FLIPSTRING Reverses the order of a string in REQ and returns it in RESP.
resp.string_value = fliplr(req.string_value);
end

Tips
• ROS 2 service servers cannot communicate errors in callback execution directly to clients. In such

situations, the servers only return the default response without any indication of failure. Hence, it
is recommended to use try-catch blocks within the callback function, and set specific fields in the
response message to communicate the success/failure of the callback execution on the server side.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• ServiceType argument must be specified.
• Callback functions must be assigned at the time of ros2svcserver object creation, and cannot

be changed during run-time.
• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
ros2svcclient | ros2

Topics
“Call and Provide ROS 2 Services”

2 Classes

2-60

rosactionserver
Create ROS Action Server

Description
Use rosactionserver to create an action server as a SimpleActionServer object. Then, use the
rosactionclient object to create an action client and connect to the action server to request the
execution of action goals. When a connected client sends a goal execution request, the server
executes the specified callback function. You can use the rosActionServerExecuteGoalFcn
function to customize the callback function based on a predefined framework. The server can provide
periodic feedback on execution progress to the clients, and stop goal execution if specified or if a new
goal is received.

When you create the action server, it registers itself with the ROS master. To get a list of actions, or
to get information about a particular action that is available on the current ROS network, use the
rosaction function.

An action is defined by a type and three messages: one for the goal, one for the feedback, and one for
the result. On receiving a goal, the server goal execution callback must periodically send feedback to
the client during goal execution, and return an appropriate result when goal execution completes.
The behavior of the action server is inherently asynchronous because it becomes active only when an
action client connects to the ROS network and issues a goal execution request.

Creation

Syntax
server = rosactionserver(actionname,actiontype,ExecuteGoalFcn=cb)
[server] = rosactionserver(___ ,"DataFormat","struct")

server = ros.SimpleActionServer(node, actionname,actiontype,
ExecuteGoalFcn=cb)
[server] = ros.SimpleActionServer(___ ,DataFormat="struct")

Description

server = rosactionserver(actionname,actiontype,ExecuteGoalFcn=cb) creates an
action server object, server, that corresponds to the ROS action of the specified name, actionname
and type, actiontype. You must also specify the ExecuteGoalFcn property as a function handle
callback, cb, which handles the goal execution when the client sends a request.

[server] = rosactionserver(___ ,"DataFormat","struct") specifies to use message
structures instead of objects, in addition to all input arguments from the previous syntax. For more
information, see “Improve Performance of ROS Using Message Structures”.

server = ros.SimpleActionServer(node, actionname,actiontype,
ExecuteGoalFcn=cb) attaches the created action server to the specified ROS node node.

 rosactionserver

2-61

[server] = ros.SimpleActionServer(___ ,DataFormat="struct") uses message
structures instead of objects. For more information, see “Improve Performance of ROS Using
Message Structures”.

Properties
ActionName — Name of the action
string scalar | character vector

This property is read-only.

Name of the action, specified as a string scalar or character vector.
Example: "/fibonacci"
Data Types: char | string

ActionType — Type of action
string scalar | character vector

This property is read-only.

Type of action, specified as a string scalar or character vector.
Example: "actionlib_tutorials/Fibonacci"
Data Types: char | string

ExecuteGoalFcn — Action callback function
function handle | cell array

Action callback function, specified as a function handle or cell array. In the first element of the cell
array, specify either a function handle, string scalar, or character vector representing a function
name. In subsequent elements, specify user data. To get a predefined framework to customize the
callback function, use rosActionServerExecuteGoalFcn.

The action callback function requires at least four input arguments with one output. The first
argument, src, is the associated action server object. The second argument, goal, is the goal
message sent by the action client. The third argument is the default response message,
defaultFeedback. The fourth argument is the default result message, defaultResultMsg. The
callback returns a result message, result, based on the input goal message and sends it back to the
action client. Use the default response message as a starting point for constructing the request
message. The callback also returns success as true if the goal was successfully reached, or as false
if the goal was aborted or preempted by another goal. The function header for the callback is:

function [result,success] = actionCallback(src,goalMsg,defaultFeedbackMsg,defaultResultMsg)

Specify the ExecuteGoalFcn property while creating the action server using the name-value pair as:

server = rosactionserver(actionname,actiontype,ExecuteGoalFcn=@actionCallback)

When setting the callback, you pass additional parameters to the callback function by including both
the callback function and the parameters as elements of a cell array. The function header for such a
callback is:

function [result,success] = actionCallback(src,goalMsg,defaultFeedbackMsg,defaultResultMsg,userData)

2 Classes

2-62

Specify the ExecuteGoalFcn property while creating the action server using the name-value pair as:

server = rosactionserver(actionname,actiontype,ExecuteGoalFcn={@actionCallback,userData})

DataFormat — Message format
"object" (default) | "struct"

Message format, specified as "object" or "struct". You must set this property on creation using
the name-value input. For more information, see “Improve Performance of ROS Using Message
Structures”.

Object Functions
getFeedbackMessage Create new action feedback message
isPreemeptRequested Check if a goal has been preempted
sendFeedback Send feedback to action client during goal execution

Examples

Create a ROS Action Server and Execute a Goal

This example shows how to create a ROS action server, connect an action client to it, receive goal,
and execute it.

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.288 seconds.
Initializing ROS master on http://172.30.131.134:57592.
Initializing global node /matlab_global_node_01849 with NodeURI http://bat6234win64:57678/ and MasterURI http://localhost:57592.

Set up an action server for calculating Fibonacci sequence. Use structures for the ROS message data
format. Use fibbonacciExecution on page 2-64 function as the callback.

cb = @fibonacciExecution;
server = rosactionserver("/fibonacci","actionlib_tutorials/Fibonacci",ExecuteGoalFcn=cb,DataFormat="struct")

server =
 SimpleActionServer with properties:

 ActionName: '/fibonacci'
 ActionType: 'actionlib_tutorials/Fibonacci'
 ExecuteGoalFcn: @fibonacciExecution
 DataFormat: 'struct'

Create action client and send a goal to the server to calculate the Fibonacci sequence up to 10 terms
past the first two terms, 0 and 1. Display the result sequence.

client = rosactionclient("/fibonacci","actionlib_tutorials/Fibonacci",DataFormat="struct");
goal = rosmessage(client);
goal.Order = int32(10);
result = sendGoalAndWait(client,goal);
result.Sequence

 rosactionserver

2-63

ans = 12x1 int32 column vector

 0
 1
 1
 2
 3
 5
 8
 13
 21
 34
 ⋮

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_01849 with NodeURI http://bat6234win64:57678/ and MasterURI http://localhost:57592.
Shutting down ROS master on http://172.30.131.134:57592.

Supporting Functions

The callback function fibbonacciExecution is executed every time the server receives a goal
execution request from the client. This function checks if the goal has been preempted, executes the
goal and sends feedback to the client during goal execution.

function [result,success] = fibonacciExecution(src,goal,defaultFeedback,defaultResult)

 % Initialize variables
 success = true;
 result = defaultResult;
 feedback = defaultFeedback;
 feedback.Sequence = int32([0 1]);

 for k = 1:goal.Order
 % Check that the client has not canceled or sent a new goal
 if isPreemptRequested(src)
 success = false;
 break
 end

 % Send feedback to the client periodically
 feedback.Sequence(end+1) = feedback.Sequence(end-1) + feedback.Sequence(end);
 sendFeedback(src,feedback)

 % Pause to allow time to complete other callbacks (like client feedback)
 pause(0.2)
 end

 if success
 result.Sequence = feedback.Sequence;
 end

end

2 Classes

2-64

Create Custom Callback for a ROS Action Server Using the Predefined Callback Framework

This example shows how to create a custom callback for a ROS action server using
rosActionServerExecuteGoalFcn, which provides a customizable predefined callback
framework.

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.775 seconds.
Initializing ROS master on http://172.30.131.134:52530.
Initializing global node /matlab_global_node_23611 with NodeURI http://bat6234win64:57542/ and MasterURI http://localhost:52530.

Set up an action server callback for calculating the Fibonacci sequence using
rosActionServerExecuteGoalFcn. Specify the custom callback functions for the tasks in the
callback framework. All the callback functions use a shared object to store data. For definition of
these custom functions, see Supporting Functions on page 2-66.

% Store the first two terms 0 and 1 in shared object
fibSequence = int32([0 1]);
% Create the callback
cb = rosActionServerExecuteGoalFcn(IsGoalReachedFcn=@isGoalReached,...
 StepExecutionFcn=@nextFibNumber,...
 CreateFeedbackFcn=@assignUserDataToMessage,...
 CreateSuccessfulResultFcn=@assignUserDataToMessage,...
 StepDelay=0.2,...
 UserData=fibSequence);

Use the created custom callback, cb and set up an action server for calculating Fibonacci sequence.
Use structures for the ROS message data format.

server = rosactionserver("/fibonacci","actionlib_tutorials/Fibonacci",ExecuteGoalFcn=cb,DataFormat="struct");

Create action client and send a goal to the server, which calculates the first 10 terms in the Fibonacci
sequence. Display the result sequence.

client = rosactionclient("/fibonacci","actionlib_tutorials/Fibonacci",DataFormat="struct");
goal = rosmessage(client);
goal.Order = int32(10);
result = sendGoalAndWait(client,goal);
result.Sequence

ans = 10x1 int32 column vector

 0
 1
 1
 2
 3
 5
 8
 13
 21
 34

 rosactionserver

2-65

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_23611 with NodeURI http://bat6234win64:57542/ and MasterURI http://localhost:52530.
Shutting down ROS master on http://172.30.131.134:52530.

Supporting Functions

The function isGoalReached checks whether the goal is reached. In this case, it checks whether the
number of terms in the calculated Fibonacci sequence exceeds the goal from the client.

function status = isGoalReached(sharedObj,goal)
 status = numel(sharedObj.UserData) >= goal.Order;
end

The function nextFibNumber is the step execution function that calculates the next term in the
sequence in every iteration towards goal execution.

function nextFibNumber(sharedObj,~)
 sharedObj.UserData(end+1) = sharedObj.UserData(end-1) + sharedObj.UserData(end);
end

The function assignUserDataToMessage assigns the current sequence to the appropriate field in
the result message. In this specific case of Fibonacci action, the feedback message also uses the same
field, Sequence as the result message. Hence, this function can be used for both creating a feedback
message and result message to the client.

function msg = assignUserDataToMessage(sharedObj,msg)
 msg.Sequence = sharedObj.UserData;
end

Version History
Introduced in R2022a

See Also
rosActionServerExecuteGoalFcn | rosactionclient | getFeedbackMessage |
isPreemeptRequested | sendFeedback | rosaction

Topics
“ROS Actions Overview”

2 Classes

2-66

rosactionclient
Create ROS action client

Description
Use the rosactionclient to connect to an action server using a SimpleActionClient object and
request the execution of action goals. You can get feedback on the execution process and cancel the
goal at any time. The SimpleActionClient object encapsulates a simple action client and enables
you to track a single goal at a time.

Creation

Syntax
client = rosactionclient(actionname)
client = rosactionclient(actionname,actiontype)
[client,goalMsg] = rosactionclient(___)
[___] = rosactionclient(___ ,"DataFormat","struct")

client = ros.SimpleActionClient(node,actionname)
client = ros.SimpleActionClient(node,actionname,actiontype)
client = ros.SimpleActionClient(___ ,"DataFormat","struct")

Description

client = rosactionclient(actionname) creates a client for the specified ROS ActionName.
The client determines the action type automatically. If the action is not available, this function
displays an error.

Use rosactionclient to connect to an action server and request the execution of action goals. You
can get feedback on the execution progress and cancel the goal at any time.

client = rosactionclient(actionname,actiontype) creates an action client with the
specified name and type (ActionType). If the action is not available, or the name and type do not
match, the function displays an error.

[client,goalMsg] = rosactionclient(___) returns a goal message to send the action client
created using any of the arguments from the previous syntaxes. The Goal message is initialized with
default values for that message.

If the ActionFcn, FeedbackFcn, and ResultFcn callbacks are defined, they are called when the
goal is processing on the action server. All callbacks associated with a previously sent goal are
disabled, but the previous goal is not canceled.

[___] = rosactionclient(___ ,"DataFormat","struct") uses message structures instead
of objects. For more information, see “ROS Message Structures” on page 2-72.

 rosactionclient

2-67

client = ros.SimpleActionClient(node,actionname) creates a client for the specified ROS
action name. The node is the Node object that is connected to the ROS network. The client
determines the action type automatically. If the action is not available, the function displays an error.

client = ros.SimpleActionClient(node,actionname,actiontype) creates an action client
with the specified name and type. You can get the type of an action using rosaction type
actionname.

client = ros.SimpleActionClient(___ ,"DataFormat","struct") uses message
structures instead of objects. For more information, see “ROS Message Structures” on page 2-72.

Properties
ActionName — ROS action name
character vector

ROS action name, returned as a character vector. The action name must match one of the topics that
rosaction("list") outputs.

ActionType — Action type for a ROS action
string scalar | character vector

Action type for a ROS action, returned as a string scalar or character vector. You can get the action
type of an action using rosaction type <action_name>. For more details, see rosaction.

IsServerConnected — Indicates if client is connected to ROS action server
false (default) | true

Indicator of whether the client is connected to a ROS action server, returned as false or true. Use
waitForServer to wait until the server is connected when setting up an action client.

Goal — Tracked goal
ROS message

Tracked goal, returned as a ROS message. This message is the last goal message this client sent. The
goal message depends on the action type.

GoalState — Goal state
character vector

Goal state, returned as one of the following:

• 'pending' — Goal was received, but has not yet been accepted or rejected.
• 'active' — Goal was accepted and is running on the server.
• 'succeeded' — Goal executed successfully.
• 'preempted' — An action client canceled the goal before it finished executing.
• 'aborted' — The goal was aborted before it finished executing. The action server typically

aborts a goal.
• 'rejected' — The goal was not accepted after being in the 'pending' state. The action server

typically triggers this status.
• 'recalled' — A client canceled the goal while it was in the 'pending' state.

2 Classes

2-68

• 'lost' — An internal error occurred in the action client.

ActivationFcn — Activation function
@(~) disp('Goal is active.') (default) | function handle

Activation function, returned as a function handle. This function executes when GoalState is set to
'active'. By default, the function displays 'Goal is active.'. You can set the function to [] to
have the action client do nothing upon activation.

FeedbackFcn — Feedback function
@(~,msg) disp(['Feedback: ', showdetails(msg)]) (default) | function handle

Feedback function, returned as a function handle. This function executes when a new feedback
message is received from the action server. By default, the function displays the details of the
message. You can set the function to [] to have the action client not give any feedback.

ResultFcn — Result function
@(~,msg,s,~) disp(['Result with state ' s ': ', showdetails(msg)]) (default) |
function handle

Result function, returned as a function handle. This function executes when the server finishes
executing the goal and returns a result state and message. By default, the function displays the state
and details of the message. You can set the function to [] to have the action client do nothing once
the goal is completed.

DataFormat — Message format
"object" (default) | "struct"

Message format, specified as "object" or "struct". You must set this property on creation using
the name-value input. For more information, see “ROS Message Structures” on page 2-72.

Object Functions
cancelGoal Cancel last goal sent by client
cancelAllGoals Cancel all goals on action server
rosmessage Create ROS messages
sendGoal Send goal message to action server
sendGoalAndWait Send goal message and wait for result
waitForServer Wait for action server to start

Examples

Setup a ROS Action Client and Execute an Action

This example shows how to create a ROS action client and execute the action. Action types must be
set up beforehand with an action server running.

You must have set up the '/fibonacci' action type. To run this action server, use the following
command on the ROS system:

rosrun actionlib_tutorials fibonacci_server

Connect to a ROS network. You must be connected to a ROS network to gather information about
what actions are available. Replace ipaddress with your network address.

 rosactionclient

2-69

ipaddress = '192.168.203.133';
rosinit(ipaddress,11311)

Initializing global node /matlab_global_node_81947 with NodeURI http://192.168.203.1:54283/

List actions available on the network. The only action set up on this network is the '/fibonacci'
action.

rosaction list

/fibonacci

Create an action client by specifying the action name. Use structures for ROS messages.

[actClient,goalMsg] = rosactionclient('/fibonacci','DataFormat','struct');

Wait for the action client to connect to the server.

waitForServer(actClient);

The fibonacci action will calculate the fibonacci sequence for a given order specified in the goal
message. The goal message was returned when creating the action client and can be modified to send
goals to the ROS action server. Set the order to an int32 value of 8.

goalMsg.Order = int32(8);

Send the goal and wait for its completion. Specify a timeout of 10 seconds to complete the action.

[resultMsg,resultState] = sendGoalAndWait(actClient,goalMsg,10);

rosShowDetails(resultMsg)

ans =
 '
 MessageType : actionlib_tutorials/FibonacciResult
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13, 21]'

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_81947 with NodeURI http://192.168.203.1:54283/

Send and Cancel ROS Action Goals

This example shows how to send and cancel goals for ROS actions. Action types must be setup
beforehand with an action server running.

You must have set up the '/fibonacci' action type. To run this action server, use the following
command on the ROS system:

rosrun actionlib_tutorials fibonacci_server

First, set up a ROS action client. Then, send a goal message with modified parameters. Finally, cancel
your goal and all goals on the action server.

2 Classes

2-70

Connect to a ROS network with a specified IP address. Create a ROS action client connected to the
ROS network using rosactionclient. Specify the action name. Wait for the client to be connected
to the server.

rosinit('192.168.203.133',11311)

Initializing global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

[actClient,goalMsg] = rosactionclient('/fibonacci','DataFormat','struct');
waitForServer(actClient);

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = int32(4);
[resultMsg,resultState] = sendGoalAndWait(actClient,goalMsg)

resultMsg = struct with fields:
 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [0 1 1 2 3]

resultState =
'succeeded'

rosShowDetails(resultMsg)

ans =
 '
 MessageType : actionlib_tutorials/FibonacciResult
 Sequence : [0, 1, 1, 2, 3]'

Send a new goal message without waiting.

goalMsg.Order = int32(5);
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

delete(actClient)

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_18287 with NodeURI http://192.168.203.1:55284/

Version History
Introduced in R2019b

 rosactionclient

2-71

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for struct messages.
• ActionType argument must be specified.
• Callback functions must be assigned at the time of rosactionclient or

ros.SimpleActionClient object creation, and cannot be changed during run-time.
• For ros.SimpleActionClient, node input argument must be empty.
• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
rosactionserver | sendGoal | cancelGoal | waitForServer | rosmessage | rosaction

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

External Websites
ROS Actions

2 Classes

2-72

https://wiki.ros.org/actionlib

rosbagreader
Access rosbag log file information

Description
The rosbagreader object is an index of the messages within a rosbag. You can use it to extract
message data from a rosbag, select messages based on specific criteria, or create a time series of the
message properties.

Creation

Syntax
bagreader = rosbagreader(filepath)

Description

bagreader = rosbagreader(filepath) creates an indexable rosbagreader object,
bagreader, that contains all the messages from the rosbag log file at the input path filepath. The
filepath input argument sets the FilePath property. To access the data, you can call readMessages
or timeseries to extract relevant data.

Properties
FilePath — Absolute path to rosbag file
character vector

This property is read-only.

Absolute path to the rosbag file, specified as a character vector.
Data Types: char

StartTime — Timestamp of first message in selection
scalar

This property is read-only.

Timestamp of the first message in the selection, specified as a scalar in seconds.
Data Types: double

EndTime — Timestamp of last message in selection
scalar

This property is read-only.

Timestamp of the last message in the selection, specified as a scalar in seconds.

 rosbagreader

2-73

Data Types: double

NumMessages — Number of messages in selection
scalar

This property is read-only.

Number of messages in the selection, specified as a scalar. When you first load a rosbag, this property
contains the number of messages in the rosbag. Once you select a subset of messages with select,
the property shows the number of messages in this subset.
Data Types: double

AvailableTopics — Table of topics in selection
table

This property is read-only.

Table of topics in the selection, specified as a table. Each row in the table lists one topic, the number
of messages for this topic, the message type, and the definition of the type.
Data Types: table

AvailableFrames — List of available coordinate frames
cell array of character vectors

This property is read-only.

List of available coordinate frames, specified as a cell array of character vectors. Use canTransform
to check whether specific transformations between frames are available, or getTransform to query
a transformation.
Data Types: cell

MessageList — List of messages in selection
table

This property is read-only.

List of messages in the selection, specified as a table. Each row in the table lists one message.
Data Types: table

Object Functions
select Select subset of messages in rosbag
readMessages Read messages from rosbag
timeseries Create time series object for selected message properties
canTransform Verify if transformation is available
getTransform Retrieve transformation between two coordinate frames

Examples

Create rosbag Selection Using rosbagreader Object

Load a rosbag log file and parse out specific messages based on the selected criteria.

2 Classes

2-74

Create a rosbagreader object of all the messages in the rosbag log file.

bagMsgs = rosbagreader("ros_multi_topics.bag")

bagMsgs =
 rosbagreader with properties:

 FilePath: 'B:\matlab\toolbox\robotics\robotexamples\ros\data\bags\ros_multi_topics.bag'
 StartTime: 201.3400
 EndTime: 321.3400
 NumMessages: 36963
 AvailableTopics: [4x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [36963x4 table]

Select a subset of the messages based on their timestamp and topic.

bagMsgs2 = select(bagMsgs,...
 Time=[bagMsgs.StartTime bagMsgs.StartTime + 1],...
 Topic='/odom')

bagMsgs2 =
 rosbagreader with properties:

 FilePath: 'B:\matlab\toolbox\robotics\robotexamples\ros\data\bags\ros_multi_topics.bag'
 StartTime: 201.3400
 EndTime: 202.3200
 NumMessages: 99
 AvailableTopics: [1x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [99x4 table]

Retrieve the messages in the selection as a cell array.

msgs = readMessages(bagMsgs2)

msgs=99×1 cell array
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 ⋮

Return certain message properties as a time series.

 rosbagreader

2-75

ts = timeseries(bagMsgs2,...
 'Pose.Pose.Position.X', ...
 'Twist.Twist.Angular.Y')

 timeseries

 Timeseries contains duplicate times.

 Common Properties:
 Name: '/odom Properties'
 Time: [99x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [99x2 double]
 DataInfo: tsdata.datametadata

Get Transformations from rosbag File Using rosbagreader Object

Get transformations from rosbag (.bag) files by loading the rosbag and checking the available
frames. From these frames, use getTransform to query the transformation between two coordinate
frames.

Load the rosbag.

bagMsgs = rosbagreader("ros_turtlesim.bag")

bagMsgs =
 rosbagreader with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\14\tp4aa60852\ros-ex81142742\ros_turtlesim.bag'
 StartTime: 1.5040e+09
 EndTime: 1.5040e+09
 NumMessages: 6089
 AvailableTopics: [6x3 table]
 AvailableFrames: {2x1 cell}
 MessageList: [6089x4 table]

Get a list of available frames.

frames = bagMsgs.AvailableFrames

frames = 2x1 cell
 {'turtle1'}
 {'world' }

Get the latest transformation between two coordinate frames.

tf = getTransform(bagMsgs,'world',frames{1})

tf =
 ROS TransformStamped message with properties:

 MessageType: 'geometry_msgs/TransformStamped'
 Header: [1x1 Header]
 Transform: [1x1 Transform]

2 Classes

2-76

 ChildFrameId: 'turtle1'

 Use showdetails to show the contents of the message

Check for a transformation available at a specific time and retrieve the transformation. Use
canTransform to check if the transformation is available. Specify the time using rostime.

tfTime = rostime(bagMsgs.StartTime + 1);
if (canTransform(bagMsgs,'world',frames{1},tfTime))
 tf2 = getTransform(bagMsgs,'world',frames{1},tfTime);
end

Version History
Introduced in R2021b

See Also
select | readMessages | timeseries | canTransform | getTransform

 rosbagreader

2-77

rosbagwriter
Create and write logs to rosbag log file

Description
Use the rosbagwriter object to create a rosbag log file and write logs to the bag file. Each log
contains a topic, its corresponding timestamp, and a ROS message.

Note The rosbagwriter object locks the created bag file for use, it is necessary to delete and clear
the rosbagwriter object in order to use the bag file with a reader or perform other operations.

Creation
Syntax
bagwriter = rosbagwriter(filepath)
bagwriter = rosbagwriter(___ ,Name,Value)

Description

bagwriter = rosbagwriter(filepath) creates a rosbag log file in the location specified by
path and returns the corresponding rosbagwriter object.

If you do not specify the name of the bag file in the filepath, the object assigns the current
timestamp as the file name. If the folders you specify in filepath are not present in the directory,
the object creates them and places the bag file accordingly. The filepath input argument sets the
FilePath property.

bagwriter = rosbagwriter(___ ,Name,Value) sets the Compression and ChunkSize properties
using name-value arguments. Use this syntax with the input argument in the previous syntax.

Properties
FilePath — Path to rosbag file
character vector

This property is read-only.

Path to the rosbag file, specified as a character vector.
Data Types: char

StartTime — Timestamp of first message written to bag file
scalar

This property is read-only.

Timestamp of the first message written to the bag file, specified as a scalar in seconds.

2 Classes

2-78

Data Types: double

EndTime — Timestamp of last message written to bag file
scalar

This property is read-only.

Timestamp of the last message written to the bag file, specified as a scalar in seconds.
Data Types: double

NumMessages — Number of messages written to bag file
scalar

This property is read-only.

Number of messages written to the bag file, specified as a scalar.
Data Types: double

Compression — Compression format of message chunks
"uncompressed" (default) | "bz2" | "lz4"

Compression format of the message chunks, specified as "bz2", "lz4", or "uncompressed".
Example: "Compression","lz4"
Data Types: char | string

ChunkSize — Size of each message chunk
786432 (default) | nonzero positive integer

Size of each message chunk, specified as a nonzero positive integer in bytes. The value specify the
buffer within the bag file object. Reducing this value results in more writes to disk.
Example: "ChunkSize",819200
Data Types: double

FileSize — Current bag file size
nonnegative integer

This property is read-only.

Current bag file size, specified as a nonnegative integer in bytes.
Data Types: double

Object Functions
write Write logs to rosbag log file
delete Remove rosbag writer object from memory

Examples

Write Log to rosbag File Using rosbagwriter Object

Retrieve all the information from the rosbag log file.

 rosbagwriter

2-79

rosbag('info','path_record.bag')

Path: C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\24\tp41b4e721\ros-ex73035957\path_record.bag
Version: 2.0
Duration: 10.5s
Start: Jul 05 2021 08:09:52.86 (1625486992.86)
End: Jul 05 2021 08:10:03.40 (1625487003.40)
Size: 13.3 KB
Messages: 102
Types: geometry_msgs/Point [4a842b65f413084dc2b10fb484ea7f17]
Topics: /circle 51 msgs : geometry_msgs/Point
 /line 51 msgs : geometry_msgs/Point

Create a rosbagreader object of all the messages in the rosbag log file.

reader = rosbagreader('path_record.bag');

Select all the messages related to the topic '/circle'.

bagSelCircle = select(reader,'Topic','/circle');

Retrieve the list of timestamps from the topic.

timeStamps = bagSelCircle.MessageList.Time;

Retrieve the messages in the selection as a cell array.

messages = readMessages(bagSelCircle);

Create a rosbagwriter object to write the messages to a new rosbag file.

circleWriter = rosbagwriter('circular_path_record.bag');

Write all the messages related to the topic '/circle' to the new rosbag file.

write(circleWriter,'/circle',timeStamps,messages);

Remove the rosbagwriter object from memory and clear the associated object.

delete(circleWriter)
clear circleWriter

Retrieve all the information from the new rosbag log file.

rosbag('info','circular_path_record.bag')

Path: C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\24\tp41b4e721\ros-ex73035957\circular_path_record.bag
Version: 2.0
Duration: 10.4s
Start: Jul 05 2021 08:09:52.86 (1625486992.86)
End: Jul 05 2021 08:10:03.29 (1625487003.29)
Size: 8.8 KB
Messages: 51
Types: geometry_msgs/Point [4a842b65f413084dc2b10fb484ea7f17]
Topics: /circle 51 msgs : geometry_msgs/Point

Load the new rosbag log file.

readerCircle = rosbagreader('circular_path_record.bag');

2 Classes

2-80

Create a time series for the coordinates.

tsCircle = timeseries(readerCircle,'X','Y');

Plot the coordinates.

plot(tsCircle.Data(:,1),tsCircle.Data(:,2))
axis equal

Create rosbag File Using rosbagwriter Object

Create a rosbagwriter object and a rosbag file in the current working directory. Specify the
compression format of the message chunks and the size of each message chunk.

bagwriter = rosbagwriter("bagfile.bag", ...
 "Compression","lz4",...
 "ChunkSize",1500)

bagwriter =
 rosbagwriter with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\21\tp5760f945\ros-ex26181333\bagfile.bag'
 StartTime: 0
 EndTime: 0
 NumMessages: 0

 rosbagwriter

2-81

 Compression: 'lz4'
 ChunkSize: 1500 Bytes
 FileSize: 4117 Bytes

Start node and connect to ROS master.

rosinit

Launching ROS Core...
...Done in 3.9209 seconds.
Initializing ROS master on http://172.30.131.134:52302.
Initializing global node /matlab_global_node_43980 with NodeURI http://bat6234win64:52834/ and MasterURI http://localhost:52302.

Write a single log to the rosbag file.

timeStamp = rostime("now");
rosMessage = rosmessage("nav_msgs/Odometry");
write(bagwriter,"/odom",timeStamp,rosMessage);
bagwriter

bagwriter =
 rosbagwriter with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\21\tp5760f945\ros-ex26181333\bagfile.bag'
 StartTime: 1.662e+09
 EndTime: 1.662e+09
 NumMessages: 1
 Compression: 'lz4'
 ChunkSize: 1500 Bytes
 FileSize: 4172 Bytes

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_43980 with NodeURI http://bat6234win64:52834/ and MasterURI http://localhost:52302.
Shutting down ROS master on http://172.30.131.134:52302.

Remove rosbag writer object from memory and clear the associated object.

delete(bagwriter)
clear bagwriter

Create a rosbagreader object and load all the messages in the rosbag log file. Verify the recently
written log.

bagreader = rosbagreader('bagfile.bag')

bagreader =
 rosbagreader with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\21\tp5760f945\ros-ex26181333\bagfile.bag'
 StartTime: 1.6620e+09
 EndTime: 1.6620e+09
 NumMessages: 1
 AvailableTopics: [1x3 table]
 AvailableFrames: {0x1 cell}

2 Classes

2-82

 MessageList: [1x4 table]

bagreader.AvailableTopics

ans=1×3 table
 NumMessages MessageType MessageDefinition
 ___________ _________________ _____________________________

 /odom 1 nav_msgs/Odometry {'std_msgs/Header Header...'}

Version History
Introduced in R2021b

See Also
Objects
rosbagreader

Functions
write | delete

 rosbagwriter

2-83

ros2bagwriter
Create and write logs to ROS 2 bag log file

Description
Use the ros2bagwriter object to create a ROS 2 bag log file (.db3) in a folder that you specify. Use
the write function to write logs to the ROS 2 bag file. Each log contains a topic, its corresponding
timestamp, and a ROS 2 message. After writing the logs to the ROS 2 bag file, call the delete
function to close the opened ROS 2 bag file, create the metadata.yaml file, and remove the object
from memory.

Note The ros2bagwriter object locks the created ROS 2 bag file. Delete and clear the
ros2bagwriter object to use the ROS 2 bag file.

Creation
Syntax
bagwriter = ros2bagwriter(path)
bagwriter = ros2bagwriter(path,Name=Value)

Description

bagwriter = ros2bagwriter(path) creates a ROS 2 bag file in the location specified by path
and returns its corresponding ros2bagwriter object. Use the object to write records into the ROS 2
bag file. Use the path input argument to set the Path property.

The name of the ROS 2 bag file is the name of the folder containing it. If the folders specified in path
are not in the directory, the object creates them and places the ROS 2 bag file accordingly.

bagwriter = ros2bagwriter(path,Name=Value) sets the CacheSize property using a name-
value argument.

Properties
Path — Path to ROS 2 bag folder
string scalar | character vector

Note This property becomes a read-only after creation of the object.

Path to the ROS 2 bag folder, specified as a string scalar or character vector.
Data Types: char | string

StartTime — Earliest timestamp of messages written to ROS 2 bag file
nonnegative numeric scalar

2 Classes

2-84

This property is read-only.

Earliest timestamp of the messages written to the ROS 2 bag file, specified as a nonnegative numeric
scalar in seconds.
Data Types: single | double

EndTime — Latest timestamp of messages written to ROS 2 bag file
nonnegative numeric scalar

This property is read-only.

Latest timestamp of the messages written to the ROS 2 bag file, specified as a nonnegative numeric
scalar in seconds.
Data Types: single | double

NumMessages — Number of messages written to ROS 2 bag file
nonnegative numeric scalar

This property is read-only.

Number of messages written to the ROS 2 bag file, specified as a nonnegative numeric scalar.
Data Types: single | double

CacheSize — Size of cache for writing messages to ROS 2 bag file
104857600 (default) | nonnegative integer

This property is read-only.

Size of the cache for writing messages to the ROS 2 bag file, specified as a positive integer in bytes.
This value specifies the total size of the messages, that the buffer of the cache holds in the object. If
you reduce this value, the object writes more messages to the disk, which consumes more time and
decreases performance of the drive.
Data Types: uint64

StorageFormat — Storage format of ROS 2 bag file
'sqlite3'

This property is read-only.

Storage format of the ROS 2 bag file, specified as 'sqlite3'.
Data Types: char | string

SerializationFormat — Serialization format of messages in ROS 2 bag file
'cdr'

This property is read-only.

Serialization format of messages in the ROS 2 bag file, specified as 'cdr'. This value is the default
binary serialization format used by Data Distribution Service (DDS), which is the default middleware
of ROS 2.
Data Types: char | string

 ros2bagwriter

2-85

Object Functions
write Write logs to ROS 2 bag log file
delete Remove ros2bagwriter object from memory

Examples

Write Log Using ros2bagwriter Object by Reading Messages from ROS 2 Bag File

Extract the zip file that contains the ROS 2 bag log file and specify the full path to the log folder.

unzip('ros2_netwrk_bag.zip');
folderPath = fullfile(pwd,'ros2_netwrk_bag');

Get all the information from the ROS 2 bag log file.

bag2info = ros2("bag","info",folderPath);

Create a ros2bagreader object that contains all messages in the log file.

bag = ros2bagreader(folderPath);
bag.AvailableTopics

ans=4×3 table
 NumMessages MessageType MessageDefinition
 ___________ _____________________ __

 /clock 1.607e+05 rosgraph_msgs/Clock {'%...' }
 /cmd_vel 3 geometry_msgs/Twist {'...' }
 /odom 5275 nav_msgs/Odometry {'% The pose in this message should be specified in the coordinate frame given by header.frame_id...'}
 /scan 892 sensor_msgs/LaserScan {'%...' }

Select a subset of the messages, by applying filters to the topic and timestamp.

start = bag.StartTime;
odomBagSel = select(bag,"Time",[start start + 30e+09],"Topic","/odom")

odomBagSel =
 ros2bagreader with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\24\tp41b4e721\ros-ex95368813\ros2_netwrk_bag\ros2_netwrk_bag.db3'
 StartTime: 1601984883976047597
 EndTime: 1601984913775044431
 AvailableTopics: [1x3 table]
 MessageList: [801x3 table]
 NumMessages: 801

Get the messages in the selection.

odomMsgs = readMessages(odomBagSel);

Retrieve the list of timestamps from the topic. Convert the list to values with the double data type.

timestamps = odomBagSel.MessageList.Time;
timestamps_double = num2cell(double(timestamps)/1e+09);

2 Classes

2-86

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder.

bagwriter = ros2bagwriter("myRos2bag");

Write the messages related to the topic '/odom' to the ROS 2 bag file.

write(bagwriter,"/odom",timestamps_double,odomMsgs)

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Load the new ROS 2 bag log file.

bagOdom = ros2bagreader("myRos2bag");

Retrieve messages from the ROS 2 bag log file.

msgs = readMessages(bagOdom);

Plot the coordinates for the messages in the ROS 2 bag log file.

Remove the myRos2bag file and the ros2_netwrk_bag file from memory to run the example again.

plot(cellfun(@(msg) msg.pose.pose.position.x,msgs),cellfun(@(msg) msg.twist.twist.angular.z,msgs))

 ros2bagwriter

2-87

Create Single Log and Write to ROS 2 Bag File

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder.

bagwriter = ros2bagwriter("myRos2bag");

Write a single log to the ROS 2 bag file.

topic = "/odom";
message = ros2message("nav_msgs/Odometry");
timestamp = ros2time(1.6170e+09);
write(bagwriter,topic,timestamp,message)

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Create Multiple Logs and Write to ROS 2 Bag File

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder. Specify the cache size
for each message.

bagwriter = ros2bagwriter("bag_files/my_bag_file",CacheSize=1500);

Write multiple logs to the ROS 2 bag file.

message1 = ros2message("nav_msgs/Odometry");
message2 = ros2message("geometry_msgs/Twist");
message3 = ros2message("sensor_msgs/Image");
write(bagwriter, ...
 ["/odom","cmd_vel","/camera/rgb/image_raw"], ...
 {ros2time(1.6160e+09),ros2time(1.6170e+09),ros2time(1.6180e+09)}, ...
 {message1,message2,message3})

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Create Multiple Logs for Same Topic and Write to ROS 2 Bag File

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder.

bagwriter = ros2bagwriter("myBag");

Write multiple logs for the same topic to the ROS 2 bag file.

pointMsg1 = ros2message("geometry_msgs/Point");
pointMsg1.x = 1;
pointMsg2 = ros2message("geometry_msgs/Point");
pointMsg2.x = 2;
pointMsg3 = ros2message("geometry_msgs/Point");

2 Classes

2-88

pointMsg3.x = 3;
write(bagwriter, ...
 "/point", ...
 {1.6190e+09, 1.6200e+09,1.6210e+09}, ...
 {pointMsg1,pointMsg2,pointMsg3})

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Version History
Introduced in R2022b

See Also
Functions
write | delete

Topics
“Write Log to rosbag File Using rosbagwriter Object” on page 2-79

 ros2bagwriter

2-89

ParameterTree
Access ROS parameter server

Description
A ParameterTree object communicates with the ROS parameter server. The ROS parameter server
can store strings, integers, doubles, Booleans, and cell arrays. The parameters are accessible globally
over the ROS network. You can use these parameters to store static data such as configuration
parameters.

To directly set, get, or access ROS parameters without creating a ParameterTree object, see
rosparam.

The following ROS data types are supported as values of parameters. For each ROS data type, the
corresponding MATLAB data type is also listed.

ROS Data Type MATLAB Data Type
32-bit integer int32
boolean logical
double double
string character vector (char)
list cell array (cell)
dictionary structure (struct)

Creation

Syntax
ptree = rosparam

ptree = ros.ParameterTree(node)

Description

ptree = rosparam creates a parameter tree object, ptree. After ptree is created, the connection
to the parameter server remains persistent until the object is deleted or the ROS master becomes
unavailable.

ptree = ros.ParameterTree(node) returns a ParameterTree object to communicate with the
ROS parameter server. The parameter tree attaches to the ROS node, node. To connect to the global
node, specify node as [].

2 Classes

2-90

Properties
AvailableParameters — List of parameter names on the server
cell array

This property is read-only.

List of parameter names on the server, specified as a cell array.
Example: {'/myParam';'/robotSize';'/hostname'}
Data Types: cell

Object Functions
get Get ROS parameter value
has Check if ROS parameter name exists
search Search ROS network for parameter names
set Set value of ROS parameter or add new parameter
del Delete a ROS parameter

Examples

Create ROS ParameterTree Object and Modify Parameters

Start the ROS master and create a ROS node.

master = ros.Core;

Launching ROS Core...
....Done in 4.5161 seconds.

node = ros.Node('/test1');

Create the parameter tree object.

ptree = ros.ParameterTree(node);

Set multiple parameters.

set(ptree,'DoubleParam',1.0)
set(ptree,'CharParam','test')
set(ptree,'CellParam',{{'test'},{1,2}});

View the available parameters.

parameters = ptree.AvailableParameters

parameters = 3x1 cell
 {'/CellParam' }
 {'/CharParam' }
 {'/DoubleParam'}

Get a parameter value.

data = get(ptree,'CellParam')

 ParameterTree

2-91

data=1×2 cell array
 {1x1 cell} {1x2 cell}

Search for a parameter name.

search(ptree,'char')

ans = 1x1 cell array
 {'/CharParam'}

Delete the parameter tree and ROS node. Shut down the ROS master.

clear('ptree','node')
clear('master')

Set A Dictionary Of Parameter Values

Use structures to specify a dictionary of ROS parameters under a specific namespace.

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.9335 seconds.
Initializing ROS master on http://172.30.131.134:59411.
Initializing global node /matlab_global_node_77544 with NodeURI http://bat6234win64:54825/ and MasterURI http://localhost:59411.

Create a dictionary of parameter values. This dictionary contains the information relevant to an
image. Display the structure to verify values.

image = imread('peppers.png');

pval.ImageWidth = size(image,1);
pval.ImageHeight = size(image,2);
pval.ImageTitle = 'peppers.png';
disp(pval)

 ImageWidth: 384
 ImageHeight: 512
 ImageTitle: 'peppers.png'

Set the dictionary of values using the desired namespace.

rosparam('set','ImageParam',pval)

Get the parameters using the namespace. Verify the parameter values.

pval2 = rosparam('get','ImageParam')

pval2 = struct with fields:
 ImageHeight: 512
 ImageTitle: 'peppers.png'
 ImageWidth: 384

Shut down ROS network.

2 Classes

2-92

rosshutdown

Shutting down global node /matlab_global_node_77544 with NodeURI http://bat6234win64:54825/ and MasterURI http://localhost:59411.
Shutting down ROS master on http://172.30.131.134:59411.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation is supported for global node but not for Node since a node cannot create another
node in code generation.

See Also
rosparam | get | has | search | set | del

Topics
“Access the ROS Parameter Server”

 ParameterTree

2-93

rospublisher
Publish message on a topic

Description
Use rospublisher to create a ROS publisher for sending messages via a ROS network. To create
ROS messages, use rosmessage. Send these messages via the ROS publisher with the send
function.

The Publisher object created by the function represents a publisher on the ROS network. The
object publishes a specific message type on a given topic. When the Publisher object publishes a
message to the topic, all subscribers to the topic receive this message. The same topic can have
multiple publishers and subscribers.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 2-98.

The publisher gets the topic message type from the topic list on the ROS master. When the MATLAB
global node publishes messages on that topic, ROS nodes that subscribe to that topic receive those
messages. If the topic is not on the ROS master topic list, this function displays an error message. If
the ROS master topic list already contains a matching topic, the ROS master adds the MATLAB global
node to the list of publishers for that topic. To see a list of available topic names, at the MATLAB
command prompt, type rostopic list.

You can create a Publisher object using the rospublisher function, or by calling
ros.Publisher:

• rospublisher only works with the global node using rosinit. It does not require a node object
handle as an argument.

• ros.Publisher works with additional nodes that are created using ros.Node. It requires a node
object handle as the first argument.

Creation
Syntax
pub = rospublisher(topicname)
pub = rospublisher(topicname,msgtype)
pub = rospublisher(___ ,Name,Value)
[pub,msg] = rospublisher(___)
[pub,msg] = rospublisher(___ ,"DataFormat","struct")

pub = ros.Publisher(node,topicname)

2 Classes

2-94

pub = ros.Publisher(node,topicname,type)
pub = ros.Publisher(___ ,"IsLatching",value)
[pub,msg] = ros.Publisher(___ ,"DataFormat","struct")

Description

pub = rospublisher(topicname) creates a publisher for a specific topic name and sets the
TopicName property. The topic must already exist on the ROS master topic list with an established
MessageType.

pub = rospublisher(topicname,msgtype) creates a publisher for a topic and adds that topic to
the ROS master topic list. The inputs are set to the TopicName and MessageType properties of the
publisher. If the topic already exists and msgtype differs from the topic type on the ROS master topic
list, the function displays an error message.

pub = rospublisher(___ ,Name,Value) provides additional options specified by one or more
Name,Value pair arguments using any of the arguments from previous syntaxes. Name is the
property name and Value is the corresponding value.

[pub,msg] = rospublisher(___) returns a message, msg, that you can send with the publisher,
pub. The message is initialized with default values. You can also get the ROS message using the
rosmessage function.

[pub,msg] = rospublisher(___ ,"DataFormat","struct") uses message structures instead
of objects. For more information, see “ROS Message Structures” on page 2-98

pub = ros.Publisher(node,topicname) creates a publisher for a topic with name, topicname.
node is the ros.Node object handle that this publisher attaches to. If node is specified as [], the
publisher tries to attach to the global node.

pub = ros.Publisher(node,topicname,type) creates a publisher with specified message type,
type. If the topic already exists, MATLAB checks the message type and displays an error if the input
type differs. If the ROS master topic list already contains a matching topic, the ROS master adds the
MATLAB global node to the list of publishers for that topic.

pub = ros.Publisher(___ ,"IsLatching",value) specifies if the publisher is latching with a
Boolean, value. If a publisher is latching, it saves the last sent message and sends it to any new
subscribers. By default, IsLatching is enabled.

[pub,msg] = ros.Publisher(___ ,"DataFormat","struct") uses message structures
instead of objects. For more information, see “ROS Message Structures” on page 2-98

Properties
TopicName — Name of the published topic
string scalar | character vector

Name of the published topic, specified as a string scalar or character vector. If the topic does not
exist, the object creates the topic using its associated message type.

This property is set at creating by the TopicName argument. The value cannot be changed after
creation.
Example: "/chatter"

 rospublisher

2-95

Data Types: char

MessageType — Message type of published messages
string scalar | character vector

Message type of published messages, specified as a string scalar or character vector. This message
type remains associated with the topic and must be used for new messages published.

This property is set at creation by the MessageType argument. The value cannot be changed after
creation.
Example: "std_msgs/String"
Data Types: char

IsLatching — Indicator of whether publisher is latching
true (default) | false

Indicator of whether publisher is latching, specified as true or false. A publisher that is latching
saves the last sent message and resends it to any new subscribers.

This property is set at creating by the IsLatching argument. The value cannot be changed after
creation.
Data Types: logical

NumSubscribers — Number of subscribers
integer

Number of subscribers to the published topic, specified as an integer.

This property is set at creating by the NumSubscribers argument. The value cannot be changed
after creation.
Data Types: double

DataFormat — Message format
"object" (default) | "struct"

Message format, specified as "object" or "struct". You must set this property on creation using
the name-value input. For more information, see “ROS Message Structures” on page 2-98.

Object Functions
send Publish ROS message to topic
rosmessage Create ROS messages

Examples

Create ROS Publisher and Send Data

Start ROS master.

rosinit

Launching ROS Core...
...Done in 3.3042 seconds.

2 Classes

2-96

Initializing ROS master on http://172.30.131.134:56889.
Initializing global node /matlab_global_node_43987 with NodeURI http://bat6234win64:56007/ and MasterURI http://localhost:56889.

Create publisher for the /chatter topic with the std_msgs/String message type. Set the
"DataFormat" name-value argument to structure ROS messages.

chatpub = rospublisher("/chatter","std_msgs/String","DataFormat","struct");

Create a message to send. Specify the Data property with a character vector.

msg = rosmessage(chatpub);
msg.Data = 'test phrase';

Send the message via the publisher.

send(chatpub,msg);

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_43987 with NodeURI http://bat6234win64:56007/ and MasterURI http://localhost:56889.
Shutting down ROS master on http://172.30.131.134:56889.

Create ROS Publisher with rospublisher and View Properties

Create a ROS publisher and view the associated properties for the rospublisher object. Add a
subscriber and view the updated properties.

Start ROS master.

rosinit

Launching ROS Core...
...Done in 3.8619 seconds.
Initializing ROS master on http://172.30.131.134:53586.
Initializing global node /matlab_global_node_81015 with NodeURI http://bat6234win64:52415/ and MasterURI http://localhost:53586.

Create a publisher and view its properties.

pub = rospublisher('/chatter','std_msgs/String','DataFormat','struct');

topic = pub.TopicName

topic =
'/chatter'

subCount = pub.NumSubscribers

subCount = 0

Subscribe to the publisher topic and view the changes in the NumSubscribers property.

sub = rossubscriber('/chatter','DataFormat','struct');
pause(1)

subCount = pub.NumSubscribers

 rospublisher

2-97

subCount = 1

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_81015 with NodeURI http://bat6234win64:52415/ and MasterURI http://localhost:53586.
Shutting down ROS master on http://172.30.131.134:53586.

Use ROS Publisher Object

Create a Publisher object using the class constructor.

Start the ROS core.

core = ros.Core;

Launching ROS Core...
...Done in 3.3113 seconds.

Create a ROS node, which connects to the master.

node = ros.Node('/test1');

Create a publisher and send string data. The publisher attaches to the node object in the first
argument.

pub = ros.Publisher(node,'/robotname','std_msgs/String','DataFormat','struct');
msg = rosmessage(pub);
msg.Data = 'robot1';
send(pub,msg);

Clear the publisher and ROS node. Shut down the ROS master.

clear('pub','node')
clear('master')

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

2 Classes

2-98

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for struct messages.
• MessageType argument must be specified.
• Introspection syntax rospublisher(topicname,message) is not supported.

See Also
Functions
send | rosmessage

Topics
“Exchange Data with ROS Publishers and Subscribers”

 rospublisher

2-99

ros2bagreader
Access ROS 2 bag log file information

Description
The ros2bagreader object is an index of the messages within a ROS 2 bag file. You can use it to
extract message data from a ROS 2 bag file or select messages based on specific criteria.

Creation

Syntax
bagreader = ros2bagreader(folderpath)

Description

bagreader = ros2bagreader(folderpath) creates an indexable ros2bagreader object,
bagreader, that contains all the messages from the ROS 2 bag file at the input path filepath. The
folderpath input sets the value of the FilePath property.

ROS 2 bag files are used for storing message data. Their primary use is in the logging of messages
transmitted over a ROS 2 network. The resulting bag file can be used for offline analysis,
visualization, and storage. MATLAB provides functionality for reading existing bag files.

Note If the ROS 2 bag log file contains custom messages, create custom messages for MATLAB using
ros2genmsg function before creating the ros2bagreader object.

Properties
FilePath — Absolute path to ROS 2 bag file
character vector

This property is read-only.

Absolute path to the ROS 2 bag files, specified as a character vector.
Data Types: char

StartTime — Timestamp of first message
scalar

This property is read-only.

Timestamp of the first message, specified as a scalar in seconds.
Data Types: uint64

2 Classes

2-100

EndTime — Timestamp of last message
scalar

This property is read-only.

Timestamp of the last message, specified as a scalar in seconds.
Data Types: uint64

NumMessages — Number of messages
scalar

This property is read-only.

Number of messages, specified as a scalar.
Data Types: double

AvailableTopics — Table of available topics
table

This property is read-only.

Table of available topics, specified as a table. Each row in the table lists one topic, the number of
messages for this topic, the message type, and the message definition.
Data Types: table

MessageList — List of messages
table

This property is read-only.

List of messages, specified as a table. Each row in the table lists one message.
Data Types: table

Object Functions
readMessages Read messages from ros2bagreader object
select Select subset of messages in ros2bagreader

Examples

Read Messages from ROS 2 Bag Log File

Extract the zip file that contains the ROS 2 bag log file and specify the full path to the log folder.

unzip('ros2_netwrk_bag.zip');
folderPath = fullfile(pwd,'ros2_netwrk_bag');

Create a ros2bagreader object that contains all messages in the log file.

bag = ros2bagreader(folderPath);

Get information on the contents of the ros2bagreader object.

 ros2bagreader

2-101

baginfo = ros2("bag","info",folderPath)

baginfo = struct with fields:
 Path: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\14\tp4aa60852\ros-ex96596996\ros2_netwrk_bag\ros2_netwrk_bag.db3'
 Version: '1'
 StorageId: 'sqlite3'
 Duration: 207.9020
 Start: [1x1 struct]
 End: [1x1 struct]
 Size: 16839538
 Messages: 166867
 Types: [4x1 struct]
 Topics: [4x1 struct]

Get all the messages in the ros2bagreader object.

msgs = readMessages(bag);

Select a subset of the messages, filtered by topic.

bagSel = select(bag,"Topic","/odom");

Get the messages in the selection.

msgsFiltered = readMessages(bagSel);

Version History
Introduced in R2021a

ros2bagreader was renamed
Behavior change in future release

The ros2bagreader object was renamed from ros2bag. Use ros2bagreader when creating the
object.

folderpath Input
Behavior changed in R2022a

• The ros2bagreader object in Foxy can accept file name of the ROS 2 bag log file (.db3) as the
folderpath input, when there is no metadata.yaml file.

• If there is metadata.yaml file along with the .db3 file in a folder, it accepts the folder name as
the folderpath input.

ROS 2 Bag Log File Version
Behavior changed in R2022a

The ros2bagreader object in Foxy can accept different versions of bag file from version 1 to 4.

Empty Messages
Behavior changed in R2022a

The ros2bagreader object in Foxy discards empty messages recorded on a topic. Whereas in
Dashing the ros2bagreader object accepts /rosout and /param_events topics.

2 Classes

2-102

See Also
Functions
readMessages | select

 ros2bagreader

2-103

ros2param
Create object to access parameters from ROS 2 nodes

Description
Create a ros2param object and use its object functions to interact with the parameters associated
with any node on the ROS 2 network. You can get, set, list and search for parameters of the specified
ROS 2 node.

Creation

Syntax
paramObj = ros2param(nodeName)
paramObj = ros2param(nodeName,DomainID=ID)

Description

paramObj = ros2param(nodeName) returns a ros2param object paramObj which you can use to
interact with the parameters associated with the specified ROS 2 node, nodeName.

paramObj = ros2param(nodeName,DomainID=ID) specifies a Domain identification of the ROS 2
network to connect to using name-value argument DomainID.

Input Arguments

nodeName — Name of the node
string | char array

The name of the node on the ROS 2 network.

Note In ROS 1, node names are unique and this is being enforced by shutting down existing nodes
when a new node with the same name is started. In ROS 2, the uniqueness of node names is not
enforced. When creating a new node, use ros2 function to list existing nodes.

Object Functions
get Get value of parameter in associated ROS 2 node
set Set value of parameter in associated ROS 2 node
list List all parameters in associated ROS 2 node
has Check if parameter exists in ROS 2 node
search Search for parameter names in ROS 2 node

Examples

2 Classes

2-104

Interact with Parameters of ROS 2 Node

Create a ROS 2 node with parameters.

nodeParams.my_double = 2.0;
nodeParams.my_namespace.my_int = int64(1);
nodeParams.my_double_array = [1.1 2.2 3.3];
nodeParams.my_string = "Keyparams";
node1 = ros2node("/node1",Parameters=nodeParams);

Create a ros2param object to interact with the parameters of the ROS 2 node, /node1.

paramObj = ros2param("/node1");

Use the set function to change the value of the parameter my_string.

set(paramObj,"my_string","Newparams");

Use the get function to obtain the new value of my_string.

stringVal = get(paramObj,"my_string")

stringVal =
'Newparams'

Use the has function to check if the parameter my_char exists in the ROS 2 node, /node1.

flag = has(paramObj,"my_char")

flag = logical
 0

Use the search function to search for names of all the parameters that contain the string "my_d".
Obtain the values of the matching parameters.

[pNames,pVals] = search(paramObj,"my_d")

pNames = 2x1 cell
 {'my_double' }
 {'my_double_array'}

pVals=2×1 cell array
 {[2]}
 {[1.1000 2.2000 3.3000]}

Use the list function to list the names of all parameters in the ROS 2 node.

pList = list(paramObj)

pList = 5x1 cell
 {'my_double' }
 {'my_double_array' }
 {'my_namespace.my_int'}
 {'my_string' }
 {'use_sim_time' }

 ros2param

2-105

Version History
Introduced in R2022b

See Also
get | set | ros2node

2 Classes

2-106

ros2publisher
Publish messages on a topic

Description
Use the ros2publisher object to publish messages on a topic. When messages are published on that
topic, ROS 2 nodes that subscribe to that topic receive those messages directly.

Creation

Syntax
pub = ros2publisher(node,topic)
pub = ros2publisher(node,topic,type)
pub = ros2publisher(___ ,Name,Value)
[pub,msg] = ros2publisher(___)

Description

pub = ros2publisher(node,topic) creates a publisher, pub, for a topic with name topic that
already exists on the ROS 2 network. node is the ros2node object handle to which the publisher
should attach. The publisher gets the topic message type from the network topic list.

Note The topic must be on the network topic list.

pub = ros2publisher(node,topic,type) creates a publisher for a topic and adds that topic to
the network topic list. If the topic list already contains a matching topic, pub will be added to the list
of publishers for that topic.

pub = ros2publisher(___ ,Name,Value) specifies additional options using one or more name-
value pair arguments. Specify name-value pair arguments after all other input arguments.

[pub,msg] = ros2publisher(___) returns a message, msg, that you can send with the
publisher, pub. The message is initialized with default values. You can also get the ROS message
using the ros2message function.

Input Arguments

node — ROS 2 node
node structure

A ros2node object on the network.

topic — Name of the published topic
string scalar | character vector

 ros2publisher

2-107

Name of the published topic, specified as a string scalar or character vector. If the topic does not
exist, the object creates the topic using its associated message type.

This property is set at creating by the TopicName argument. The value cannot be changed after
creation.
Example: "/chatter"
Data Types: char

type — Message type of published messages
string scalar | character vector

Message type of published messages, specified as a string scalar or character vector. This message
type remains associated with the topic and must be used for new messages published.

This property is set at creation by the MessageType argument. The value cannot be changed after
creation.
Example: "std_msgs/String"
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

History — Mode of storing messages in the queue
"keeplast" (default) | "keepall"

Determines the mode of storing messages in the queue. The queued messages will be sent to late-
joining subscribers. If the queue fills with messages waiting to be processed, then old messages will
be dropped to make room for new. If set to "keeplast", the queue stores the number of messages
set by the Depth property. If set to "keepall", the queue stores all messages up to the resource
limits of MATLAB.
Data Types: double

Depth — Size of the message queue
positive integer

Number of messages stored in the message queue when History is set to "keeplast".
Example: 42
Data Types: double

Reliability — Delivery guarantee of messages
"reliable" (default) | "besteffort"

Affects the guarantee of message delivery. If "reliable", then delivery is guaranteed, but may retry
multiple times. If "besteffort", then delivery is attempt, but retried.
Example: "reliable"

2 Classes

2-108

Data Types: char | string

Durability — Persistence of messages
"volatile" (default) | "transientlocal"

Affects persistence of messages in publishers, which allows late-joining subscribers to receive the
number of old messages specified by Depth. If "volatile", then messages do not persist. If
"transientlocal", then publisher will persist most recent messages.
Example: "volatile"
Data Types: char | string

Properties
TopicName — Name of the published topic
string scalar | character vector

Name of the published topic, specified as a string scalar or character vector. If the topic does not
exist, the object creates the topic using its associated message type.

This property is set at creating by the TopicName argument. The value cannot be changed after
creation.
Example: "/chatter"
Data Types: char

MessageType — Message type of published messages
string scalar | character vector

Message type of published messages, specified as a string scalar or character vector. This message
type remains associated with the topic and must be used for new messages published.

This property is set at creation by the MessageType argument. The value cannot be changed after
creation.
Example: "std_msgs/String"
Data Types: char

History — Message queue mode
"keeplast" (default) | "keepall"

This property is read-only.

Determines the mode of storing messages in the queue. The queued messages will be sent to late-
joining subscribers. If the queue fills with messages waiting to be processed, then old messages will
be dropped to make room for new. When set to "keeplast", the queue stores the number of
messages set by the Depth property. Otherwise, when set to "keepall", the queue stores all
messages up to the resource limits of MATLAB.
Example: "keeplast"
Data Types: char | string

Depth — Size of the message queue
positive integer

 ros2publisher

2-109

This property is read-only.

Number of messages stored in the message queue when History is set to "keeplast".
Example: 42
Data Types: double

Reliability — Delivery guarantee of messages
"reliable" (default) | "besteffort"

This property is read-only.

Affects the guarantee of message delivery. If "reliable", then delivery is guaranteed, but may retry
multiple times. If "besteffort", then delivery is attempt, but retried.
Example: "reliable"
Data Types: char | string

Durability — Persistence of messages
"volatile" (default) | "transientlocal"

This property is read-only.

Affects persistence of messages in publishers, which allows late-joining subscribers to receive the
number of old messages specified by Depth. If "volatile", then messages do not persist. If
"transientlocal", then publisher will persist most recent messages.
Example: "volatile"
Data Types: char | string

Object Functions
ros2message Create ROS 2 message structures
send Publish ROS 2 message to topic

Examples

Create an Empty ROS 2 Message

Create a ROS 2 node.

node = ros2node('node1_empty_ros2_msg');

Create publisher and message.

chatPub = ros2publisher(node,"/chatter","std_msgs/String")

chatPub =
 ros2publisher with properties:

 TopicName: '/chatter'
 MessageType: 'std_msgs/String'
 History: 'keeplast'
 Depth: 10

2 Classes

2-110

 Reliability: 'reliable'
 Durability: 'volatile'

msg = ros2message(chatPub)

msg = struct with fields:
 MessageType: 'std_msgs/String'
 data: ''

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• MessageType argument must be specified.
• ros2publisher(___) does not return a message, msg, that you can send with the publisher, pub. You

can get the ROS message using the ros2message function.

See Also
ros2subscriber | ros2message | send

Topics
“Manage Quality of Service Policies in ROS 2”

 ros2publisher

2-111

ros2subscriber
Subscribe to messages on a topic

Description
Use the ros2subscriber to receive messages on a topic. When ROS 2 nodes publish messages on that
topic, MATLAB will receive those message through this subscriber.

Creation
Syntax
sub = ros2subscriber(node,topic)
sub = ros2subscriber(node,topic,type)
sub = ros2subscriber(node,topic,callback)
sub = ros2subscriber(node,topic,type,callback)
sub = ros2subscriber(___ ,Name,Value)

Description

sub = ros2subscriber(node,topic) creates a subscriber, sub, for a topic with name topic
that already exists on the ROS 2 network. node is the ros2node object to which this subscriber
attaches. The subscriber gets the topic message type from the network topic list.

Note The topic must be on the network topic list.

sub = ros2subscriber(node,topic,type) creates a subscriber for a topic and adds that topic
to the network topic list. If the topic list already contains a matching topic, sub will be added to the
list of subscribers for that topic. The type must be the same as the topic. Use this syntax to avoid
errors when it is possible for the subscriber to subscribe to a topic before a topic has been added to
the network.

sub = ros2subscriber(node,topic,callback) specifies a callback function, callback, and
optional data, to run when the subscriber object handle receives a topic message. Use this syntax if
action needs to be taken on every message, while not blocking code execution. callback can be a
single function handle or a cell array. The first element of the cell array needs to be a function handle
or a string containing the name of a function. The remaining elements of the cell array can be
arbitrary user data that will be passed to the callback function.

Note The subscriber callback function uses a single input argument, the received message object,
msg. The function header for the callback is as follows:

function subCallback(src, msg)

You pass additional parameters to the callback function by including both the callback function and
the parameters as elements of a cell array when setting the callback.

2 Classes

2-112

sub = ros2subscriber(node,topic,type,callback) specifies a callback function callback,
and subscribes to a topic that has the specified name topic and message type type.

sub = ros2subscriber(___ ,Name,Value) specifies additional options using one or more name-
value pair arguments. Specify name-value pair arguments after all other input arguments.

Input Arguments

node — ROS 2 node
ros2node structure

A ros2node object on the network.

topic — Name of the published topic
string scalar | char array

Name of the published topic, specified as a string scalar or character vector. If the topic does not
exist, the object creates the topic based on the associated message type.
Example: "/chatter"

type — Subscribed message type
string scalar | char array

This property is read-only.

The message type of subscribed messages.
Example: "std_msgs/String"

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

History — Mode of storing messages in the queue
"keeplast" (default) | "keepall"

Determines the mode of storing messages in the queue. If the queue fills with messages waiting to be
processed, then old messages will be dropped to make room for new. If set to "keeplast", the queue
stores the number of messages set by the Depth property. If set to "keepall", the queue stores all
messages up to the MATLAB resource limits.

Depth — Size of the message queue
non-negative scalar integer (default)

Number of messages stored in the message queue when History is set to "keeplast".
Example: 42
Data Types: double

Reliability — Delivery guarantee of messages
"reliable" (default) | "besteffort"

 ros2subscriber

2-113

Requirement on the guarantee of message delivery. If "reliable", then delivery is guaranteed, but
may retry multiple times. If "besteffort", then attempt delivery and do not retry.
Example: "reliable"
Data Types: char | string

Durability — Persistence of messages
"volatile" (default) | "transientlocal"

Requirement on the persistence of messages in connected publishers, which allows late-joining
subscribers to receive the number of old messages specified by Depth. If "volatile", then message
persistence is not required and no messages are requested when the subscriber joins the network. If
"transientlocal", then the subscriber will require publishers to persist messages, and will
request the number of messages specified by Depth.
Example: "volatile"
Data Types: char | string

Properties
TopicName — Name of the published topic
string scalar | character vector

Name of the published topic, specified as a string scalar or character vector. If the topic does not
exist, the object creates the topic based on the associated message type.
Example: "/chatter"
Data Types: char

MessageType — Subscribed message type
string scalar | character vector

This property is read-only.

The message type of subscribed messages.
Example: "std_msgs/String"
Data Types: char | string

LatestMessage — Latest received message
Message object handle

This property is read-only.

The most recently received ROS 2 message, specified as a Message object handle, received.

NewMessageFcn — Subscriber callback function
function handle

This property is read-only.

Callback function for subscriber callbacks.

2 Classes

2-114

Note The subscriber callback function uses a single input argument, the received message object,
msg. The function header for the callback is as follows:

function subCallback(msg)

You pass additional parameters to the callback function by including both the callback function and
the parameters as elements of a cell array when setting the callback.

History — Message queue mode
"keeplast" (default) | "keepall"

This property is read-only.

Determines the mode of storing messages in the queue. If the queue fills with messages waiting to be
processed, then old messages will be dropped to make room for new. When set to "keeplast", the
queue stores the number of messages set by the Depth property. Otherwise, when set to "keepall",
the queue stores all messages up to the MATLAB resource limits.
Example: "keeplast"
Data Types: char | string

Depth — Size of the message queue
non-negative scalar integer

This property is read-only.

Number of messages stored in the message queue when History is set to "keeplast".
Example: 42
Data Types: double

Reliability — Delivery guarantee of messages
"reliable" (default) | "besteffort"

This property is read-only.

Requirement on the guarantee of message delivery. If "reliable", then delivery is guaranteed, but
may retry multiple times. If "besteffort", then attempt delivery and do not retry.
Example: "reliable"
Data Types: char | string

Durability — Persistence of messages
"volatile" (default) | "transientlocal"

This property is read-only.

Requirement on the persistence of messages in connected publishers, which allows late-joining
subscribers to receive the number of old messages specified by Depth. If "volatile", then message
persistence is not required and no messages are requested when the subscriber joins the network. If
"transientlocal", then the subscriber will require publishers to persist messages, and will
request the number of messages specified by Depth.
Example: "volatile"

 ros2subscriber

2-115

Data Types: char | string

Object Functions
receive Wait for new message
ros2message Create ROS 2 message structures

Examples

Exchange Data with ROS 2 Publishers and Subscribers

The primary mechanism for ROS 2 nodes to exchange data is to send and receive messages.
Messages are transmitted on a topic and each topic has a unique name in the ROS 2 network. If a
node wants to share information, it must use a publisher to send data to a topic. A node that wants to
receive that information must use a subscriber for that same topic. Besides its unique name, each
topic also has a message type, which determines the type of messages that are allowed to be
transmitted in the specific topic.

This publisher-subscriber communication has the following characteristics:

• Topics are used for many-to-many communication. Multiple publishers can send messages to the
same topic and multiple subscribers can receive them.

• Publisher and subscribers are decoupled through topics and can be created and destroyed in any
order. A message can be published to a topic even if there are no active subscribers.

This example shows how to publish and subscribe to topics in a ROS 2 network. It also shows how to:

• Wait until a new message is received, or
• Use callbacks to process new messages in the background

Prerequisites: “Get Started with ROS 2”, “Connect to a ROS 2 Network”

2 Classes

2-116

Subscribe and Wait for Messages

Create a sample ROS 2 network with several publishers and subscribers.

exampleHelperROS2CreateSampleNetwork

Use ros2 topic list to see which topics are available.

ros2 topic list

/parameter_events
/pose
/rosout
/scan

Assume you want to subscribe to the /scan topic. Use ros2subscriber to subscribe to the /scan
topic. Specify the name of the node with the subscriber. If the topic already exists in the ROS 2
network, ros2subscriber detects its message type automatically, so you do not need to specify it.

detectNode = ros2node("/detection");
pause(5)
laserSub = ros2subscriber(detectNode,"/scan");
pause(5)

Use receive to wait for a new message. Specify a timeout of 10 seconds. The output scanData
contains the received message data. status indicates whether a message was received successfully
and statustext provides additional information about the status.

[scanData,status,statustext] = receive(laserSub,10);

You can now remove the subscriber laserSub and the node associated to it.

clear laserSub
clear detectNode

Subscribe Using Callback Functions

Instead of using receive to get data, you can specify a function to be called when a new message is
received. This allows other MATLAB code to execute while the subscriber is waiting for new
messages. Callbacks are essential if you want to use multiple subscribers.

Subscribe to the /pose topic, using the callback function exampleHelperROS2PoseCallback,
which takes a received message as the input. One way of sharing data between your main workspace
and the callback function is to use global variables. Define two global variables pos and orient.

controlNode = ros2node("/base_station");
pause(5)
poseSub = ros2subscriber(controlNode,"/pose",@exampleHelperROS2PoseCallback);
global pos
global orient

The global variables pos and orient are assigned in the exampleHelperROS2PoseCallback
function when new message data is received on the /pose topic.

function exampleHelperROS2PoseCallback(message)
 % Declare global variables to store position and orientation
 global pos
 global orient

 ros2subscriber

2-117

 % Extract position and orientation from the ROS message and assign the
 % data to the global variables.
 pos = [message.linear.x message.linear.y message.linear.z];
 orient = [message.angular.x message.angular.y message.angular.z];
end

Wait a moment for the network to publish another /pose message. Display the updated values.

pause(3)
disp(pos)

 0.0434 -0.0392 -0.0318

disp(orient)

 -0.0401 -0.0010 -0.0307

If you type in pos and orient a few times in the command line you can see that the values are
continuously updated.

Stop the pose subscriber by clearing the subscriber variable

clear poseSub
clear controlNode

Note: There are other ways to extract information from callback functions besides using globals. For
example, you can pass a handle object as additional argument to the callback function. See the
“Create Callbacks for Graphics Objects” documentation for more information about defining callback
functions.

Publish Messages

Create a publisher that sends ROS 2 string messages to the /chatter topic.

chatterPub = ros2publisher(node_1,"/chatter","std_msgs/String");

Create and populate a ROS 2 message to send to the /chatter topic.

chatterMsg = ros2message(chatterPub);
chatterMsg.data = 'hello world';

Use ros2 topic list to verify that the /chatter topic is available in the ROS 2 network.

ros2 topic list

/chatter
/parameter_events
/pose
/rosout
/scan

Define a subscriber for the /chatter topic. exampleHelperROS2ChatterCallback is called when
a new message is received, and displays the string content in the message.

chatterSub = ros2subscriber(node_2,"/chatter",@exampleHelperROS2ChatterCallback)

chatterSub =
 ros2subscriber with properties:

2 Classes

2-118

 TopicName: '/chatter'
 LatestMessage: []
 MessageType: 'std_msgs/String'
 NewMessageFcn: @exampleHelperROS2ChatterCallback
 History: 'keeplast'
 Depth: 10
 Reliability: 'reliable'
 Durability: 'volatile'

Publish a message to the /chatter topic. Observe that the string is displayed by the subscriber
callback.

send(chatterPub,chatterMsg)
pause(3)

ans =
'hello world'

The exampleHelperROS2ChatterCallback function was called when the subscriber received the
string message.

Disconnect From ROS 2 Network

Remove the sample nodes, publishers and subscribers from the ROS 2 network. Also clear the global
variables pos and orient

clear global pos orient
clear

Next Steps

• “Work with Basic ROS 2 Messages”
• “ROS 2 Custom Message Support”

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• MessageType argument must be specified.
• Callback functions must be assigned at the time of ros2subscriber object creation, and cannot

be changed during run-time.

See Also
ros2publisher | ros2node

 ros2subscriber

2-119

Topics
“Manage Quality of Service Policies in ROS 2”
“ROS Custom Message Support”

2 Classes

2-120

rosrate
Execute loop at fixed frequency

Description
The rosrate object uses the rateControl superclass to inherit most of its properties and methods.
The main difference is that rateControl uses the ROS node as a source for time information.
Therefore, it can use the ROS simulation or wall clock time (see the IsSimulationTime property).

If rosinit creates a ROS master in MATLAB, the global node uses wall clock time.

The performance of the rosrate object and the ability to maintain the DesiredRate value depends
on the publishing of the clock information in ROS.

Tip The scheduling resolution of your operating system and the level of other system activity can
affect rate execution accuracy. As a result, accurate rate timing is limited to 100 Hz for execution of
MATLAB code. To improve performance and execution speeds, use code generation.

Creation

Syntax
rate = rosrate(desiredRate)
rate = ros.Rate(node,desiredRate)

Description

rate = rosrate(desiredRate) creates a Rate object, which enables you to execute a loop at a
fixed frequency, DesiredRate. The time source is linked to the time source of the global ROS node,
which requires you to connect MATLAB to a ROS network using rosinit.

rate = ros.Rate(node,desiredRate) creates a Rate object that operates loops at a fixed rate
based on the time source linked to the specified ROS node, node.

Properties
DesiredRate — Desired execution rate
scalar

Desired execution rate of loop, specified as a scalar in hertz. When using waitfor, the loop operates
every DesiredRate seconds, unless the loop takes longer. It then begins the next loop based on the
specified OverRunAction.

DesiredPeriod — Desired time period between executions
scalar

 rosrate

2-121

Desired time period between executions, specified as a scalar in seconds. This property is equal to
the inverse of DesiredRate.

TotalElapsedTime — Elapsed time since construction or reset
scalar

Elapsed time since construction or reset, specified as a scalar in seconds.

LastPeriod — Elapsed time between last two calls to waitfor
NaN (default) | scalar

Elapsed time between last two calls to waitfor, specified as a scalar. By default, LastPeriod is set
to NaN until waitfor is called for the first time. After the first call, LastPeriod equals
TotalElapsedTime.

OverrunAction — Method for handling overruns
'slip' (default) | 'drop'

Method for handling overruns, specified as one of these character vectors:

• 'drop' — waits until the next time interval equal to a multiple of DesiredPeriod
• 'slip' — immediately executes the loop again

Each code section calls waitfor at the end of execution.

IsSimulationTime — Indicator if simulation or wall clock time is used
true | false

2 Classes

2-122

Indicator if simulation or wall clock time is used, returned as true or false. If true, the Rate
object is using the ROS simulation time to regulate the rate of loop execution.

Object Functions
waitfor Pause code execution to achieve desired execution rate
statistics Statistics of past execution periods
reset Reset Rate object

Examples

Run Loop At Fixed Rate Using rosrate

Initialize the ROS master and the global node.

rosinit

Launching ROS Core...
....Done in 5.024 seconds.
Initializing ROS master on http://172.30.131.134:53862.
Initializing global node /matlab_global_node_63887 with NodeURI http://bat6234win64:53921/ and MasterURI http://localhost:53862.

Create a rate object that runs at 1 Hz.

r = rosrate(1);

Start loop that prints iteration and time elapsed. Use waitfor to pause the loop until the next time
interval. Reset r prior to the loop execution. Notice that each iteration executes at a 1-second
interval.

reset(r)
for i = 1:10
 time = r.TotalElapsedTime;
 fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
 waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.010753
Iteration: 2 - Time Elapsed: 1.024771
Iteration: 3 - Time Elapsed: 2.007461
Iteration: 4 - Time Elapsed: 3.014532
Iteration: 5 - Time Elapsed: 4.010985
Iteration: 6 - Time Elapsed: 5.001247
Iteration: 7 - Time Elapsed: 6.005850
Iteration: 8 - Time Elapsed: 7.012451
Iteration: 9 - Time Elapsed: 8.006541
Iteration: 10 - Time Elapsed: 9.012696

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_63887 with NodeURI http://bat6234win64:53921/ and MasterURI http://localhost:53862.
Shutting down ROS master on http://172.30.131.134:53862.

 rosrate

2-123

Run Loop At Fixed Rate Using ROS Time

Initialize the ROS master and node.

rosinit

Launching ROS Core...
....Done in 4.1733 seconds.
Initializing ROS master on http://192.168.88.1:51279.
Initializing global node /matlab_global_node_86106 with NodeURI http://ah-avijayar:50550/

node = ros.Node('/testTime');

Using Master URI http://localhost:51279 from the global node to connect to the ROS master.

Create a ros.Rate object running at 20 Hz.

r = ros.Rate(node,20);

Reset the object to restart the timer and run the loop for 30 iterations. Insert code you want to run in
the loop before calling waitfor.

reset(r)
for i = 1:30
 % User code goes here.
 waitfor(r);
end

Shut down ROS node.

rosshutdown

Shutting down global node /matlab_global_node_86106 with NodeURI http://ah-avijayar:50550/
Shutting down ROS master on http://192.168.88.1:51279.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• statistics object function is not supported.

See Also
rateControl | waitfor

Topics
“Execute Code Based on ROS Time”

2 Classes

2-124

ros2rate
Execute loop at fixed frequency

Description
The ros2rate object allows you to execute a loop at a fixed frequency. It uses the ROS 2 node as a
source for time information. Therefore, it can use the ROS 2 simulation time or wall clock time (see
the IsSimulationTime property).

The performance of the ros2rate object, and the ability to maintain the DesiredRate value depend
on the publishing of the clock information in ROS 2 network. Because the ros2rate object relies on
the pause function, disabling pause will result in inaccurate execution.

Tip The scheduling resolution of your operating system and the level of other system activity can
affect rate execution accuracy. As a result, accurate rate timing is limited to 100 Hz when executing
MATLAB code. To improve performance and execution speeds, use code generation.

Creation
rate = ros2rate(node,desiredRate)

Description

rate = ros2rate(node,desiredRate) creates a ros2rate object, rate, that enables you to
execute a loop at a fixed frequency, desiredRate. The object uses the time source of the specified
ROS 2 node object, node.

Properties
IsSimulationTime — Loop execution uses simulation or wall clock time
true or 1 | false or 0

Loop execution uses simulation or wall clock time, specified as 1 (true) or 0 (false). If true, the
ros2rate object uses the ROS simulation time to regulate the rate of loop execution.

DesiredRate — Desired execution rate
positive scalar

Desired execution rate of the loop, specified as a scalar in Hz. When using waitfor, the loop
operates every DesiredRate seconds, unless the loop takes longer than that to execute. It then
begins the next loop based on the specified OverrunAction.

DesiredPeriod — Desired time period between executions
positive scalar

Desired time period between executions, specified as a positive scalar in seconds. This property is
equal to the inverse of DesiredRate.

 ros2rate

2-125

TotalElapsedTime — Elapsed time since construction or reset
positive scalar

Elapsed time since construction or reset, specified as a positive scalar in seconds.

LastPeriod — Elapsed time between last two calls to waitfor
NaN (default) | scalar

Elapsed time between last two calls to waitfor, specified as a scalar. By default, LastPeriod is set
to NaN until waitfor is called for the first time.

OverrunAction — Method for handling overruns
'slip' (default) | 'drop'

Method for handling overruns, specified as one of these character vectors:

• 'drop' — Executes the next iteration of the loop at the next time step equal to a multiple of
DesiredPeriod.

• 'slip' — Immediately executes the next iteration of the loop.

Each code section calls waitfor at the end of execution.

Object Functions
waitfor Pause code execution to achieve desired execution rate
statistics Statistics of past execution periods

2 Classes

2-126

reset Reset ros2rate object

Examples

Run Loop at Fixed Rate Using ros2rate

Create a ROS 2 node.

node = ros2node("/myNode");

Create a publisher to publish a standard integer message.

pub = ros2publisher(node,"/my_int","std_msgs/Int64");

Create a ros2rate object that runs at 2 Hz.

r = ros2rate(node,2);

Start loop that prints the current iteration and time elapsed. Use waitfor to pause the loop until the
next time interval. Reset r prior to the loop execution. Notice that each iteration executes at a 1-
second interval.

reset(r)
for i = 1:10
 time = r.TotalElapsedTime;
 fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
 waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.011678
Iteration: 2 - Time Elapsed: 0.515243
Iteration: 3 - Time Elapsed: 1.009290
Iteration: 4 - Time Elapsed: 1.505659
Iteration: 5 - Time Elapsed: 2.019408
Iteration: 6 - Time Elapsed: 2.517053
Iteration: 7 - Time Elapsed: 3.003471
Iteration: 8 - Time Elapsed: 3.512179
Iteration: 9 - Time Elapsed: 4.006785
Iteration: 10 - Time Elapsed: 4.503804

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The statistics object function is not supported.

 ros2rate

2-127

• The OverrunAction setting 'drop' is not supported.

See Also
waitfor | reset

2 Classes

2-128

rossubscriber
Subscribe to messages on a topic

Description
Use rossubscriber to create a ROS subscriber for receiving messages on the ROS network. To
send messages, use rospublisher. To wait for a new ROS message, use the receive function with
your created subscriber.

The Subscriber object created by the rossubscriber function represents a subscriber on the ROS
network. The Subscriber object subscribes to an available topic or to a topic that it creates. This
topic has an associated message type. Publishers can send messages over the network that the
Subscriber object receives.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 2-134.

You can create a Subscriber object by using the rossubscriber function, or by calling
ros.Subscriber:

• rossubscriber works only with the global node using rosinit. It does not require a node
object handle as an argument.

• ros.Subscriber works with additional nodes that are created using ros.Node. It requires a
node object handle as the first argument.

Creation

Syntax
sub = rossubscriber(topicname)
sub = rossubscriber(topicname,msgtype)
sub = rossubscriber(topicname,callback)
sub = rossubscriber(topicname, msgtype,callback)
sub = rossubscriber(___ ,Name,Value)
sub = rossubscriber(___ ,"DataFormat","struct")

sub = ros.Subscriber(node,topicname)
sub = ros.Subscriber(node,topicname,msgtype)
sub = ros.Subscriber(node,topicname,callback)
sub = ros.Subscriber(node,topicname,type,callback)
sub = ros.Subscriber(___ ,"BufferSize",value)
sub = ros.Subscriber(___ ,"DataFormat","struct")

 rossubscriber

2-129

Description

sub = rossubscriber(topicname) subscribes to a topic with the given TopicName.The topic
must already exist on the ROS master topic list with an established message type. When ROS nodes
publish messages on that topic, MATLAB receives those messages through this subscriber.

sub = rossubscriber(topicname,msgtype) subscribes to a topic that has the specified name,
TopicName, and type, MessageType. If the topic list on the ROS master does not include a topic with
that specified name and type, it is added to the topic list. Use this syntax to avoid errors when
subscribing to a topic before a publisher has added the topic to the topic list on the ROS master.

sub = rossubscriber(topicname,callback) specifies a callback function, callback, that runs
when the subscriber object handle receives a topic message. Use this syntax to avoid the blocking
receive function. The callback function can be a single function handle or a cell array. The first
element of the cell array must be a function handle or a string containing the name of a function. The
remaining elements of the cell array can be arbitrary user data that is passed to the callback
function.

sub = rossubscriber(topicname, msgtype,callback) specifies a callback function and
subscribes to a topic that has the specified name, TopicName, and type, MessageType.

sub = rossubscriber(___ ,Name,Value) provides additional options specified by one or more
Name,Value pair arguments using any of the arguments from previous syntaxes. Name is the
property name and Value is the corresponding value.

sub = rossubscriber(___ ,"DataFormat","struct") uses message structures instead of
objects. For more information, see “ROS Message Structures” on page 2-134

sub = ros.Subscriber(node,topicname) subscribes to a topic with name, TopicName. The
node is the ros.Node object handle that this publisher attaches to.

sub = ros.Subscriber(node,topicname,msgtype) specifies the message type, MessageType,
of the topic. If a topic with the same name exists with a different message type, MATLAB creates a
new topic with the given message type.

sub = ros.Subscriber(node,topicname,callback) specifies a callback function, and optional
data, to run when the subscriber object receives a topic message. See NewMessageFcn for more
information about the callback function.

sub = ros.Subscriber(node,topicname,type,callback) specifies the topic name, message
type, and callback function for the subscriber.

sub = ros.Subscriber(___ ,"BufferSize",value) specifies the queue size in BufferSize
for incoming messages. You can use any combination of previous inputs with this syntax.

sub = ros.Subscriber(___ ,"DataFormat","struct") uses message structures instead of
objects. For more information, see “ROS Message Structures” on page 2-134

Properties
TopicName — Name of the subscribed topic
string scalar | character vector

This property is read-only.

2 Classes

2-130

Name of the subscribed topic, specified as a string scalar or character vector. If the topic does not
exist, the object creates the topic using its associated message type.
Example: "/chatter"
Data Types: char | string

MessageType — Message type of subscribed messages
string scalar | character vector

This property is read-only.

Message type of subscribed messages, specified as a string scalar or character vector. This message
type remains associated with the topic.
Example: "std_msgs/String"
Data Types: char | string

LatestMessage — Latest message sent to the topic
Message object

Latest message sent to the topic, specified as a Message object. The Message object is specific to the
given MessageType. If the subscriber has not received a message, then the Message object is empty.

BufferSize — Buffer size
1 (default) | scalar

Buffer size of the incoming message queue, specified as the comma-separated pair consisting of
"BufferSize" and a scalar. If messages arrive faster than your callback can process them, they are
deleted once the incoming queue is full.

NewMessageFcn — Callback property
function handle | cell array

Callback property, specified as a function handle or cell array. In the first element of the cell array,
specify either a function handle or a string representing a function name. In subsequent elements,
specify user data.

The subscriber callback function requires at least two input arguments. The first argument, src, is
the associated subscriber object. The second argument, msg, is the received message object. The
function header for the callback is:

function subCallback(src,msg)

Specify the NewMessageFcn property as:

sub.NewMessageFcn = @subCallback;

When setting the callback, you pass additional parameters to the callback function by including both
the callback function and the parameters as elements of a cell array. The function header for the
callback is:

function subCallback(src,msg,userData)

Specify the NewMessageFcn property as:

sub.NewMessageFcn = {@subCallback,userData};

 rossubscriber

2-131

DataFormat — Message format
"object" (default) | "struct"

Message format, specified as "object" or "struct". You must set this property on creation using
the name-value input. For more information, see “ROS Message Structures” on page 2-134.

Object Functions
receive Wait for new ROS message
rosmessage Create ROS messages

Examples

Create A Subscriber and Get Data From ROS

Connect to a ROS network. Set up a sample ROS network. The '/scan' topic is being published on
the network.

rosinit

Launching ROS Core...
...Done in 3.3025 seconds.
Initializing ROS master on http://172.30.131.134:60240.
Initializing global node /matlab_global_node_99766 with NodeURI http://bat6234win64:55949/ and MasterURI http://localhost:60240.

exampleHelperROSCreateSampleNetwork

Create a subscriber for the '/scan' topic using message structures. Wait for the subscriber to
register with the master.

sub = rossubscriber('/scan','DataFormat','struct');
pause(1);

Receive data from the subscriber as a ROS message structure. Specify a 10-second timeout.

[msg2,status,statustext] = receive(sub,10)

msg2 = struct with fields:
 MessageType: 'sensor_msgs/LaserScan'
 Header: [1x1 struct]
 AngleMin: -0.5467
 AngleMax: 0.5467
 AngleIncrement: 0.0017
 TimeIncrement: 0
 ScanTime: 0.0330
 RangeMin: 0.4500
 RangeMax: 10
 Ranges: [640x1 single]
 Intensities: []

status = logical
 1

statustext =
'success'

2 Classes

2-132

Shutdown the timers used by sample network.

exampleHelperROSShutDownSampleNetwork

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_99766 with NodeURI http://bat6234win64:55949/ and MasterURI http://localhost:60240.
Shutting down ROS master on http://172.30.131.134:60240.

Create A Subscriber That Uses A Callback Function

You can trigger callback functions when subscribers receive messages. Specify the callback when you
create it or use the NewMessageFcn property.

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.8259 seconds.
Initializing ROS master on http://172.30.131.134:57894.
Initializing global node /matlab_global_node_80557 with NodeURI http://bat6234win64:56228/ and MasterURI http://localhost:57894.

Setup a publisher to publish a message to the '/chatter' topic. This topic is used to trigger the
subscriber callback. Specify the Data property of the message. Wait 1 second to allow the publisher
to register with the network.

pub = rospublisher('/chatter','std_msgs/String','DataFormat','struct');
msg = rosmessage(pub);
msg.Data = 'hello world';
pause(1)

Set up a subscriber with a specified callback function. The exampleHelperROSChatterCallback
function displays the Data inside the received message.

sub = rossubscriber('/chatter',@exampleHelperROSChatterCallback,'DataFormat','struct');
pause(1)

Send the message via the publisher. The subscriber should execute the callback to display the new
message. Wait for the message to be received.

send(pub,msg);
pause(1)

ans =
'hello world'

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_80557 with NodeURI http://bat6234win64:56228/ and MasterURI http://localhost:57894.
Shutting down ROS master on http://172.30.131.134:57894.

 rossubscriber

2-133

Use ROS Subscriber Object

Use a ROS Subscriber object to receive messages over the ROS network.

Start the ROS core and node.

master = ros.Core;

Launching ROS Core...
..Done in 2.7747 seconds.

node = ros.Node('/test');

Create a publisher and subscriber to send and receive a message over the ROS network. Use ROS
messages as structures.

pub = ros.Publisher(node,'/chatter','std_msgs/String','DataFormat','struct');
sub = ros.Subscriber(node,'/chatter','std_msgs/String','DataFormat','struct');

Send a message over the network.

msg = rosmessage(pub);
msg.Data = 'hello world';
send(pub,msg)

View the message data using the LatestMessage property of the Subscriber object.

pause(1)
sub.LatestMessage

ans = struct with fields:
 MessageType: 'std_msgs/String'
 Data: 'hello world'

Clear the publisher, subscriber, and ROS node. Shut down the ROS master.

clear('pub','sub','node')
clear('master')

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

2 Classes

2-134

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for struct messages.
• MessageType argument must be specified.
• Callback functions must be assigned at the time of Subscriber object creation, and cannot be

changed during run-time.

See Also
receive | rospublisher | rosmessage

Topics
“Exchange Data with ROS Publishers and Subscribers”

 rossubscriber

2-135

rossvcclient
Connect to ROS service server

Description
Use rossvcclient or ros.ServiceClient to create a ROS service client object. This service
client uses a persistent connection to send requests to, and receive responses from, a ROS service
server. The connection persists until the service client is deleted or the service server becomes
unavailable.

Use the ros.ServiceClient syntax when connecting to a specific ROS node.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 2-140.

Creation
Syntax
client = rossvcclient(servicename)
client = rossvcclient(servicename,Name,Value)

[client,reqmsg] = rossvcclient(___)
[___] = rossvcclient(___ ,"DataFormat","struct")

client = ros.ServiceClient(node, name)
client = ros.ServiceClient(node, name,"Timeout",timeout)
[___] = ros.ServiceClient(___ ,"DataFormat","struct")

Description

client = rossvcclient(servicename) creates a service client with the given ServiceName
that connects to, and gets its ServiceType from, a service server. This command syntax prevents
the current MATLAB program from running until it can connect to the service server.

client = rossvcclient(servicename,Name,Value) provides additional options specified by
one or more Name,Value pair arguments.

[client,reqmsg] = rossvcclient(___) returns a new service request message in reqmsg,
using any of the arguments from previous syntaxes. The message type of reqmsg is determined by
the service that client is connected to. The message is initialized with default values. You can also
create the request message using rosmessage.

[___] = rossvcclient(___ ,"DataFormat","struct") uses message structures instead of
objects. For more information, see “ROS Message Structures” on page 2-140.

2 Classes

2-136

client = ros.ServiceClient(node, name) creates a service client that connects to a service
server. The client gets its service type from the server. The service client attaches to the ros.Node
object handle, node.

client = ros.ServiceClient(node, name,"Timeout",timeout) specifies a timeout period
in seconds for the client to connect the service server.

[___] = ros.ServiceClient(___ ,"DataFormat","struct") uses message structures
instead of objects. For more information, see “ROS Message Structures” on page 2-140.

Properties
ServiceName — Name of the service
string scalar | character vector

This property is read-only.

Name of the service, specified as a string scalar or character vector.
Example: "/gazebo/get_model_state"

ServiceType — Type of service
string scalar | character vector

This property is read-only.

Type of service, specified as a string scalar or character vector.
Example: "gazebo_msgs/GetModelState"

DataFormat — Message format
"object" (default) | "struct"

Message format, specified as "object" or "struct". You must set this property on creation using
the name-value input. For more information, see “ROS Message Structures” on page 2-140.

Object Functions
rosmessage Create ROS messages
call Call ROS or ROS 2 service server and receive a response
isServerAvailable Determine if ROS or ROS 2 service server is available
waitForServer Wait for ROS or ROS 2 service server to start

Examples

Call Service Client with Default Message

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.2861 seconds.
Initializing ROS master on http://172.30.131.134:53576.
Initializing global node /matlab_global_node_51384 with NodeURI http://bat6234win64:49973/ and MasterURI http://localhost:53576.

 rossvcclient

2-137

Set up a service server. Use structures for the ROS message data format.

server = rossvcserver('/test', 'std_srvs/Empty', @exampleHelperROSEmptyCallback,...
 'DataFormat','struct');
client = rossvcclient('/test','DataFormat','struct');

Check whether the service server is available. If it is, wait for the service client to connect to the
server.

if(isServerAvailable(client))
 [connectionStatus,connectionStatustext] = waitForServer(client)
end

connectionStatus = logical
 1

connectionStatustext =
'success'

Call service server with default message.

response = call(client)

response = struct with fields:
 MessageType: 'std_srvs/EmptyResponse'

If the call function above fails, it results in an error. Instead of an error, if you would prefer to react
to a call failure using conditionals, return the status and statustext outputs from the call
function. The status output indicates if the call succeeded, while statustext provides additional
information.

numCallFailures = 0;
[response,status,statustext] = call(client,"Timeout",3);
if ~status
 numCallFailures = numCallFailues + 1;
 fprintf("Call failure number %d. Error cause: %s\n",numCallFailures,statustext)
else
 disp(response)
end

 MessageType: 'std_srvs/EmptyResponse'

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_51384 with NodeURI http://bat6234win64:49973/ and MasterURI http://localhost:53576.
Shutting down ROS master on http://172.30.131.134:53576.

Use ROS Service Server with ServiceServer and ServiceClient Objects

Create a ROS service serve by creating a ServiceServer object and use ServiceClient objects to
request information over the network. The callback function used by the server takes a string,
reverses it, and returns the reversed string.

2 Classes

2-138

Start the ROS master and node.

master = ros.Core;

Launching ROS Core...
...Done in 3.4421 seconds.

node = ros.Node('/test');

Create a service server. This server expects a string as a request and responds with a string based on
the callback. Use structures for the ROS message data format.

server = ros.ServiceServer(node,'/data/string',...
 'roseus/StringString','DataFormat','struct');

Create a callback function. This function takes an input string as the Str property of req and returns
it as the Str property of resp. The function definition is shown here, but is defined below the
example. req is a ROS message you create using rosmessage.

function [resp] = flipString(~,req,resp)
% FLIPSTRING Reverses the order of a string in REQ and returns it in RESP.
resp.Str = fliplr(req.Str);
end

Assign the callback function for incoming service calls.

server.NewRequestFcn = @flipString;

Create a service client and connect to the service server. Use structures for the ROS message data
format.

Create a request message based on the client.

client = ros.ServiceClient(node,'/data/string','DataFormat','struct');
request = rosmessage(client);
request.Str = 'hello world';

Send a service request and wait for a response. Specify that the service waits 3 seconds for a
response.

response = call(client,request,'Timeout',3)

response = struct with fields:
 MessageType: 'roseus/StringStringResponse'
 Str: 'dlrow olleh'

The response is a flipped string from the request message.

Clear the service client, service server, and ROS node. Shut down the ROS master.

clear('client', 'server', 'node')
clear('master')

function [resp] = flipString(~,req,resp)
% FLIPSTRING Reverses the order of a string in REQ and returns it in RESP.
resp.Str = fliplr(req.Str);
end

 rossvcclient

2-139

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Specify ServiceType when you create the client
Behavior change in future release

In a future release, you must specify the ServiceType property during the client creation.

Timeout name-value pair argument will be removed in a future release
Not recommended starting in R2021b

In a future release, Timeout name-value pair argument will be removed for rossvcclient. Use
waitForServer instead to specify a timeout and obtain the connection status of the client to the
service server.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for struct messages.
• ServiceType property must be specified.
• Callback functions must be assigned at the time of rossvcclient object creation, and cannot be

changed during run-time.

2 Classes

2-140

• For ros.ServiceClient, node input argument must be empty.
• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
rosservice | rossvcserver | call | isServerAvailable | waitForServer | rosmessage

Topics
“Call and Provide ROS Services”

 rossvcclient

2-141

rossvcserver
Create ROS service server

Description
Use rossvcserver or ros.ServiceServer to create a ROS service server that can receive
requests from, and send responses to, a ROS service client. You must create the service server before
creating the service client rossvcclient.

When you create the service client, it establishes a connection to the server. The connection persists
while both client and server exist and can reach each other. When you create the service server, it
registers itself with the ROS master. To get a list of services, or to get information about a particular
service that is available on the current ROS network, use the rosservice function.

The service has an associated message type and contains a pair of messages: one for the request and
one for the response. The service server receives a request, constructs an appropriate response
based on a call function, and returns it to the client. The behavior of the service server is inherently
asynchronous because it becomes active only when a service client connects to the ROS network and
issues a call.

Use the ros.ServiceServer syntax when connecting to a specific ROS node.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 2-145.

Creation

Syntax
server = rossvcserver(servicename,svctype)
server = rossvcserver(servicename,svctype,callback)
[___] = rossvcclient(___ ,"DataFormat","struct")

server = ros.ServiceServer(node, name,type)
server = ros.ServiceServer(node, name,type,callback)
[___] = ros.ServiceServer(___ ,"DataFormat","struct")

Description

server = rossvcserver(servicename,svctype) creates a service server object with the
specified ServiceType available in the ROS network under the name ServiceName. The service
object cannot respond to service requests until you specify a function handle callback,
NewMessageFcn.

2 Classes

2-142

server = rossvcserver(servicename,svctype,callback) specifies the callback function
that constructs a response when the server receives a request. The callback specifies the
NewMessageFcn property.

[___] = rossvcclient(___ ,"DataFormat","struct") uses message structures instead of
objects with any of the arguments in previous syntaxes. For more information, see “ROS Message
Structures” on page 2-145.

server = ros.ServiceServer(node, name,type) creates a service server that attaches to the
ROS node, node. The server becomes available through the specified service name and type once a
callback function handle is specified in NewMessageFcn.

server = ros.ServiceServer(node, name,type,callback) specifies the callback function,
which is set to the NewMessageFcn property.

[___] = ros.ServiceServer(___ ,"DataFormat","struct") uses message structures
instead of objects. For more information, see “ROS Message Structures” on page 2-145.

Properties
ServiceName — Name of the service
string scalar | character vector

This property is read-only.

Name of the service, specified as a string scalar or character vector.
Example: "/gazebo/get_model_state"
Data Types: char | string

ServiceType — Type of service
string scalar | character vector

This property is read-only.

Type of service, specified as a string scalar or character vector.
Example: "gazebo_msgs/GetModelState"
Data Types: char | string

NewMessageFcn — Callback property
function handle | cell array

Callback property, specified as a function handle or cell array. In the first element of the cell array,
specify either a function handle, string scalar, or character vector representing a function name. In
subsequent elements, specify user data.

The service callback function requires at least three input arguments with one output. The first
argument, src, is the associated service server object. The second argument, reqMsg, is the request
message object sent by the service client. The third argument is the default response message object,
defaultRespMsg. The callback returns a response message, response, based on the input request
message and sends it back to the service client. Use the default response message as a starting point
for constructing the request message. The function header for the callback is:

 rossvcserver

2-143

function response = serviceCallback(src,reqMsg,defaultRespMsg)

Specify the NewMessageFcn property as:

server.NewMessageFcn = @serviceCallback;

When setting the callback, you pass additional parameters to the callback function by including both
the callback function and the parameters as elements of a cell array. The function header for the
callback is:

function response = serviceCallback(src,reqMsg,defaultRespMsg,userData)

Specify the NewMessageFcn property as:

server.NewMessageFcn = {@serviceCallback,userData};

DataFormat — Message format
"object" (default) | "struct"

Message format, specified as "object" or "struct". You must set this property on creation using
the name-value input. For more information, see “ROS Message Structures” on page 2-145.

Object Functions
rosmessage Create ROS messages

Examples

Call Service Client with Default Message

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.2861 seconds.
Initializing ROS master on http://172.30.131.134:53576.
Initializing global node /matlab_global_node_51384 with NodeURI http://bat6234win64:49973/ and MasterURI http://localhost:53576.

Set up a service server. Use structures for the ROS message data format.

server = rossvcserver('/test', 'std_srvs/Empty', @exampleHelperROSEmptyCallback,...
 'DataFormat','struct');
client = rossvcclient('/test','DataFormat','struct');

Check whether the service server is available. If it is, wait for the service client to connect to the
server.

if(isServerAvailable(client))
 [connectionStatus,connectionStatustext] = waitForServer(client)
end

connectionStatus = logical
 1

2 Classes

2-144

connectionStatustext =
'success'

Call service server with default message.

response = call(client)

response = struct with fields:
 MessageType: 'std_srvs/EmptyResponse'

If the call function above fails, it results in an error. Instead of an error, if you would prefer to react
to a call failure using conditionals, return the status and statustext outputs from the call
function. The status output indicates if the call succeeded, while statustext provides additional
information.

numCallFailures = 0;
[response,status,statustext] = call(client,"Timeout",3);
if ~status
 numCallFailures = numCallFailues + 1;
 fprintf("Call failure number %d. Error cause: %s\n",numCallFailures,statustext)
else
 disp(response)
end

 MessageType: 'std_srvs/EmptyResponse'

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_51384 with NodeURI http://bat6234win64:49973/ and MasterURI http://localhost:53576.
Shutting down ROS master on http://172.30.131.134:53576.

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

 rossvcserver

2-145

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Specify NewMessageFcn call back property when you create the server
Behavior change in future release

In a future release, you must specify the NewMessageFcn callback property during the server
creation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for struct messages.
• ServiceType argument must be specified.
• Callback functions must be assigned at the time of rossvcserver or ros.ServiceServer

object creation, and cannot be changed during run-time.
• For ros.ServiceServer, node input argument must be empty.
• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
rossvcclient | call | rosmessage

Topics
“Call and Provide ROS Services”

2 Classes

2-146

rostf
Receive, send, and apply ROS transformations

Description
Calling the rostf function creates a ROS TransformationTree object, which allows you to access
the tf coordinate transformations that are shared on the ROS network. You can receive
transformations and apply them to different entities. You can also send transformations and share
them with the rest of the ROS network.

ROS uses the tf transform library to keep track of the relationship between multiple coordinate
frames. The relative transformations between these coordinate frames are maintained in a tree
structure. Querying this tree lets you transform entities like poses and points between any two
coordinate frames. To access available frames, use the syntax:

tfTree.AvailableFrames

Use the ros.TransformationTree syntax when connecting to a specific ROS node, otherwise use
rostf to create the transformation tree.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 2-151.

Creation

Syntax
tfTree = rostf
tfTree = rostf("DataFormat","struct")

trtree = ros.TransformationTree(node)
tfTree = ros.TransformationTree(node,"DataFormat","struct")

Description

tfTree = rostf creates a ROS TransformationTree object.

tfTree = rostf("DataFormat","struct") uses message structures instead of objects. For
more information, see “ROS Message Structures” on page 2-151.

trtree = ros.TransformationTree(node) creates a ROS transformation tree object handle
that the transformation tree is attached to. The node is the node connected to the ROS network that
publishes transformations.

 rostf

2-147

tfTree = ros.TransformationTree(node,"DataFormat","struct") uses message
structures instead of objects. For more information, see “ROS Message Structures” on page 2-151.

Properties
AvailableFrames — List of all available coordinate frames
cell array

This property is read-only.

List of all available coordinate frames, specified as a cell array. This list of available frames updates if
new transformations are received by the transformation tree object.
Example: {'camera_center';'mounting_point';'robot_base'}
Data Types: cell

LastUpdateTime — Time when the last transform was received
ROS Time object

This property is read-only.

Time when the last transform was received, specified as a ROS Time object.

BufferTime — Length of time transformations are buffered
10 (default) | scalar

Length of time transformations are buffered, specified as a scalar in seconds. If you change the buffer
time from the current value, the transformation tree and all transformations are reinitialized. You
must wait for the entire buffer time to be completed to get a fully buffered transformation tree.

DataFormat — Message format
"object" (default) | "struct"

Message format, specified as "object" or "struct". You must set this property on creation using
the name-value input. For more information, see “ROS Message Structures” on page 2-151.

Object Functions
waitForTransform Wait until a transformation is available
getTransform Retrieve transformation between two coordinate frames
transform Transform message entities into target coordinate frame
sendTransform Send transformation to ROS network

Examples

Create a ROS Transformation Tree

Connect to a ROS network and create a transformation tree.

Connect to a ROS network. Create a node. Use the example helper function to publish transformation
data.

rosinit

2 Classes

2-148

Launching ROS Core...
...Done in 3.2479 seconds.
Initializing ROS master on http://172.30.131.134:49738.
Initializing global node /matlab_global_node_50469 with NodeURI http://bat6234win64:54260/ and MasterURI http://localhost:49738.

node = ros.Node('/testTf');

Using Master URI http://localhost:49738 from the global node to connect to the ROS master.

exampleHelperROSStartTfPublisher

Create a transformation tree. Use structures as the ROS message data format. Use the
AvailableFrames property to see the transformation frames available. These transformations were
specified separately prior to connecting to the network.

tree = rostf('DataFormat','struct');
pause(1);
tree.AvailableFrames

ans = 3x1 cell
 {'camera_center' }
 {'mounting_point'}
 {'robot_base' }

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_50469 with NodeURI http://bat6234win64:54260/ and MasterURI http://localhost:49738.
Shutting down ROS master on http://172.30.131.134:49738.

Use TransformationTree Object

Create a ROS transformation tree. You can then view or use transformation information for different
coordinate frames setup in the ROS network.

Start ROS network and broadcast sample transformation data.

rosinit

Launching ROS Core...
...Done in 3.2903 seconds.
Initializing ROS master on http://172.30.131.134:58457.
Initializing global node /matlab_global_node_68521 with NodeURI http://bat6234win64:55942/ and MasterURI http://localhost:58457.

node = ros.Node('/testTf');

Using Master URI http://localhost:58457 from the global node to connect to the ROS master.

exampleHelperROSStartTfPublisher

Retrieve the TransformationTree object. Pause to wait for tftree to update.

tftree = ros.TransformationTree(node,'DataFormat','struct');
pause(1)

 rostf

2-149

View available coordinate frames and the time when they were last received.

frames = tftree.AvailableFrames

frames = 3x1 cell
 {'camera_center' }
 {'mounting_point'}
 {'robot_base' }

updateTime = tftree.LastUpdateTime

updateTime = struct with fields:
 Sec: 1661953451
 Nsec: 269614900

Wait for the transform between two frames, 'camera_center' and 'robot_base'. This will wait
until the transformation is valid and block all other operations. A time out of 5 seconds is also given.

waitForTransform(tftree,'robot_base','camera_center',5)

Define a point in the camera's coordinate frame

pt = rosmessage('geometry_msgs/PointStamped','DataFormat','struct');
pt.Header.FrameId = 'camera_center';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

Transform the point into the 'base_link' frame.

tfpt = transform(tftree, 'robot_base', pt)

tfpt = struct with fields:
 MessageType: 'geometry_msgs/PointStamped'
 Header: [1x1 struct]
 Point: [1x1 struct]

Display the transformed point coordinates.

tfpt.Point

ans = struct with fields:
 MessageType: 'geometry_msgs/Point'
 X: 1.2000
 Y: 1.5000
 Z: -2.5000

Clear ROS node. Shut down ROS master.

clear('node')
rosshutdown

Shutting down global node /matlab_global_node_68521 with NodeURI http://bat6234win64:55942/ and MasterURI http://localhost:58457.
Shutting down ROS master on http://172.30.131.134:58457.

2 Classes

2-150

Limitations
• In ROS Noetic, multiple coordinate frames with redundant timestamp cannot be published.

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Supported only for the Build Type, Executable.
• Usage in MATLAB Function block is not supported.

See Also
waitForTransform | getTransform | transform | sendTransform

Topics
“Access the tf Transformation Tree in ROS”

 rostf

2-151

rostime
Access ROS time functionality

Description
A ROS Time message represents an instance of time in seconds and nanoseconds. This time can be
based on your system time, the ROS simulation time, or an arbitrary time.

Creation

Syntax
time = rostime(totalSecs)
time = rostime(secs,nsecs)

time = rostime("now")
[time,issimtime] = rostime("now")
time = rostime("now","system")

time = rostime(___ ,"DataFormat","struct")

Description

time = rostime(totalSecs) initializes the time values for seconds and nanoseconds based on
totalSecs, which represents the time in seconds as a floating-point number.

Note In a future release, ROS Toolbox will use message structures instead of objects for ROS
messages.

To use message structures now, set the "DataFormat" name-value argument to "struct". For more
information, see “ROS Message Structures” on page 2-155.

time = rostime(secs,nsecs) initializes the time values for seconds and nanoseconds
individually. Both inputs must be integers. Large values for nsecs are wrapped automatically with
the remainder added to secs.

time = rostime("now") returns the current ROS time. If the use_sim_time ROS parameter is
set to true, the rostime returns the simulation time published on the clock topic. Otherwise, the
function returns the system time of your machine. The time is a ROS Time object. If no output
argument is given, the current time (in seconds) is printed to the screen.

The rostime can be used to timestamp messages or to measure time in the ROS network.

[time,issimtime] = rostime("now") also returns a Boolean that indicates if time is in
simulation time (true) or system time (false).

2 Classes

2-152

time = rostime("now","system") always returns the system time of your machine, even if ROS
publishes simulation time on the clock topic. If no output argument is given, the system time (in
seconds) is printed to the screen.

The system time in ROS follows the UNIX or POSIX time standard. POSIX time is defined as the time
that has elapsed since 00:00:00 Coordinated Universal Time (UTC), 1 January 1970, not counting leap
seconds.

time = rostime(___ ,"DataFormat","struct") uses message structures instead of objects
with any of the arguments in previous syntaxes. For more information, see “ROS Message Structures”
on page 2-155.

Properties
totalSecs — Total time
0 (default) | scalar

Total time, specified as a floating-point scalar. The integer portion is set to the Sec property with the
remainder applied to Nsec property of the Time object.

Sec — Whole seconds
0 (default) | positive integer

Whole seconds, specified as a positive integer.

Note The maximum and minimum values for secs are [0, 4294967294].

Nsec — Nanoseconds
0 (default) | positive integer

Nanoseconds, specified as a positive integer. It this value is greater than or equal to 109, then the
value is wrapped and the remainders are added to the value of Sec.

DataFormat — Message format
"object" (default) | "struct"

Message format, specified as "object" or "struct". You must set this property on creation using
the name-value input. For more information, see “ROS Message Structures” on page 2-155.

Examples

Get Current ROS Time

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.2615 seconds.
Initializing ROS master on http://172.30.131.134:57711.
Initializing global node /matlab_global_node_02548 with NodeURI http://bat6234win64:61718/ and MasterURI http://localhost:57711.

 rostime

2-153

Get the current ROS Time as a ROS message structure. You can also check whether is it system time
by getting the issim output.

[t,issim] = rostime('now','DataFormat','struct')

t = struct with fields:
 Sec: 1661954065
 Nsec: 485303000

issim = logical
 0

Shutdown the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_02548 with NodeURI http://bat6234win64:61718/ and MasterURI http://localhost:57711.
Shutting down ROS master on http://172.30.131.134:57711.

Timestamp ROS Message Data

Initialize a ROS network.

rosinit

Launching ROS Core...
...Done in 3.3009 seconds.
Initializing ROS master on http://172.30.131.134:58010.
Initializing global node /matlab_global_node_93050 with NodeURI http://bat6234win64:64652/ and MasterURI http://localhost:58010.

Create a stamped ROS message using structures. Specify the Header.Stamp property with the
current system time.

point = rosmessage('geometry_msgs/PointStamped','DataFormat','struct');
point.Header.Stamp = rostime('now','system','DataFormat','struct');

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_93050 with NodeURI http://bat6234win64:64652/ and MasterURI http://localhost:58010.
Shutting down ROS master on http://172.30.131.134:58010.

ROS Time to MATLAB Time Example

This example shows how to convert current ROS time into a MATLAB® standard time. The ROS Time
object is first converted to a double in seconds, then to the specified MATLAB time.

Set up ROS network and store the ROS time as a structure message.

rosinit

Launching ROS Core...
....Done in 4.9058 seconds.

2 Classes

2-154

Initializing ROS master on http://172.30.131.134:49181.
Initializing global node /matlab_global_node_75231 with NodeURI http://bat6234win64:56226/ and MasterURI http://localhost:49181.

t = rostime('now','DataFormat','struct');

Convert ROS Time to double using the seconds function and set time to a specified MATLAB format,
datetime.

time = datetime(t.Sec + 10^-9*t.Nsec,'ConvertFrom','posixtime')

time = datetime
 31-Aug-2022 13:32:30

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_75231 with NodeURI http://bat6234win64:56226/ and MasterURI http://localhost:49181.
Shutting down ROS master on http://172.30.131.134:49181.

Version History
Introduced in R2019b

ROS Message Structures
Behavior change in future release

You can now create messages as structures with fields matching the message object properties. Using
structures typically improves performance of creating, updating, and using ROS messages, but
message fields are no longer validated when set. Message types and corresponding field values from
the structures are validated when sent across the network.

To use ROS messages as structures, use the "DataFormat" name-value argument when creating
your publishers, subscribers, or other ROS objects. Any messages generated from these objects will
utilize structures.

pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")
msg = rosmessage(pub)

You can also create messages as structures directly, but make sure to specify the data format as
"struct" for the publisher, subscriber, or other ROS objects as well. ROS objects still use message
objects by default.

msg = rosmessage("/scan","sensor_msgs/LaserScan","DataFormat","struct")
...
pub = rospublisher("/scan","sensor_msgs/LaserScan","DataFormat","struct")

In a future release, ROS messages will use structures by default and ROS message objects will be
removed.

For more information, see “Improve Performance of ROS Using Message Structures”.

 rostime

2-155

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rosduration | rosmessage

2 Classes

2-156

TransformStamped
Create transformation message

Description
The TransformStamped object is an implementation of the geometry_msgs/TransformStamped
message type in ROS. The object contains meta-information about the message itself and the
transformation. The transformation has a translational and rotational component.

Creation
Syntax
tform = getTransform(tftree,targetframe,sourceframe)

Description

tform = getTransform(tftree,targetframe,sourceframe) returns the latest known
transformation between two coordinate frames. Transformations are structured as a 3-D translation
(3-element vector) and a 3-D rotation (quaternion).

Properties
MessageType — Message type of ROS message
character vector

This property is read-only.

Message type of ROS message, returned as a character vector.
Data Types: char

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId.

ChildFrameID — Second coordinate frame to transform point into
character vector

Second coordinate frame to transform point into, specified as a character vector.

Transform — Transformation message
Transform object

This property is read-only.

 TransformStamped

2-157

Transformation message, specified as a Transform object. The object contains the MessageType
with a Translation vector and Rotation quaternion.

Object Functions
apply Transform message entities into target frame

Examples

Inspect Sample TransformStamped Object

This example looks at the TransformStamped object to show the underlying structure of a
TransformStamped ROS message. After setting up a network and transformations, you can create a
transformation tree and get transformations between specific coordinate systems. Using
showdetails lets you inspect the information in the transformation. It contains the ChildFrameId,
Header, and Transform.

Start ROS network and setup transformations.

rosinit

Launching ROS Core...
...Done in 3.6698 seconds.
Initializing ROS master on http://172.30.131.134:57891.
Initializing global node /matlab_global_node_03938 with NodeURI http://bat6234win64:55798/ and MasterURI http://localhost:57891.

exampleHelperROSStartTfPublisher

Create transformation tree and wait for tree to update. Get the transform between the robot base and
its camera center.

tftree = rostf;
waitForTransform(tftree,'camera_center','robot_base');
tform = getTransform(tftree,'camera_center','robot_base');

Inspect the TransformStamped object.

showdetails(tform)

 Header
 Stamp
 Sec : 1661952450
 Nsec : 301067200
 Seq : 0
 FrameId : camera_center
 Transform
 Translation
 X : 0.5
 Y : 0
 Z : -1
 Rotation
 X : 0
 Y : -0.7071067811865476
 Z : 0
 W : 0.7071067811865476
 ChildFrameId : robot_base

2 Classes

2-158

Access the Translation vector inside the Transform property.

trans = tform.Transform.Translation

trans =
 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 0.5000
 Y: 0
 Z: -1.0000

 Use showdetails to show the contents of the message

Stop the example transformation publisher.

exampleHelperROSStopTfPublisher

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_03938 with NodeURI http://bat6234win64:55798/ and MasterURI http://localhost:57891.
Shutting down ROS master on http://172.30.131.134:57891.

Apply Transformation using TransformStamped Object

Apply a transformation from a TransformStamped object to a PointStamped message.

Start ROS network and setup transformations.

rosinit

Launching ROS Core...
...Done in 3.1586 seconds.
Initializing ROS master on http://172.30.131.134:54796.
Initializing global node /matlab_global_node_23845 with NodeURI http://bat6234win64:56745/ and MasterURI http://localhost:54796.

exampleHelperROSStartTfPublisher

Create transformation tree and wait for tree to update. Get the transform between the robot base and
its camera center. Inspect the transformation.

tftree = rostf;
waitForTransform(tftree,'camera_center','robot_base');
tform = getTransform(tftree,'camera_center','robot_base');
showdetails(tform)

 Header
 Stamp
 Sec : 1661952411
 Nsec : 289105700
 Seq : 0
 FrameId : camera_center
 Transform

 TransformStamped

2-159

 Translation
 X : 0.5
 Y : 0
 Z : -1
 Rotation
 X : 0
 Y : -0.7071067811865476
 Z : 0
 W : 0.7071067811865476
 ChildFrameId : robot_base

Create point to transform. You could also get this point message off the ROS network.

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_center';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

Apply the transformation to the point.

tfpt = apply(tform,pt);

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_23845 with NodeURI http://bat6234win64:56745/ and MasterURI http://localhost:54796.
Shutting down ROS master on http://172.30.131.134:54796.

Version History
Introduced in R2019b

See Also
Functions
rostf | apply | getTransform | transform | waitForTransform

Topics
“Access the tf Transformation Tree in ROS”

2 Classes

2-160

velodyneROSMessageReader
Read Velodyne ROS messages

Description
The velodyneROSMessageReader object reads point cloud data from VelodyneScan ROS messages,
collected from a Velodyne® lidar sensor. To read this point cloud data into the workspace as point
cloud object, use the readFrame object function. To check for additional point clouds in the message
set, use the hasFrame object function.

Creation

Syntax
veloReader = velodyneROSMessageReader(msgs,devicemodel)
veloReader = velodyneFileReader(fileName,deviceModel,Name=Value)

Description

veloReader = velodyneROSMessageReader(msgs,devicemodel) creates a Velodyne ROS
message reader object for a set of VelodyneScan ROS messages msgs from a specified device model
devicemodel.

veloReader = velodyneFileReader(fileName,deviceModel,Name=Value) specifies options
using one or more name-value arguments in addition to any combination of arguments from previous
syntaxes. For example, (OrganizePoints=true) returns an organized point cloud.

Input Arguments

msgs — ROS Velodyne scan messages
cell array of VelodyneScan message objects | structure array

Velodyne scan ROS messages, specified as a cell array of VelodyneScan message objects or a
structure array. The message type is velodyne_msgs/VelodyneScan. This argument sets the
VelodyneMessages property.

devicemodel — Name of device model
'VLP16' | 'VLP32C' | 'HDL32E' | 'HDL64E'

Name of the device model, specified as a character vector:

• 'VLP16'
• 'VLP32C'
• 'HDL32E'
• 'HDL64E'

 velodyneROSMessageReader

2-161

Note Specifying a device model other than the one that captured the scans may result in improperly
calibrated point clouds.

Properties
VelodyneMessages — Raw Velodyne ROS messages
cell array of VelodyneScan message objects | structure array

This property is read-only.

Raw Velodyne ROS messages, specified as a cell array of VelodyneScan message objects or structure
array. The ROS messages are of type velodyne_msgs/VelodyneScan.

DeviceModel — Velodyne device model name
'VLP16' | 'VLP32C' | 'HDL32E' | 'HDL64E' | 'VLS128'

This property is read-only.

Velodyne device model name, specified as 'VLP16', 'VLP32C', 'HDL32E', 'HDL64E', or 'VLS128'.

Note Specifying a device model other than the one that captured the scans may result in improperly
calibrated point clouds.

CalibrationFile — Name of Velodyne calibration XML file
character vector | string scalar

This property is read-only.

Name of the Velodyne calibration XML file, specified as a character vector or string scalar. Each
device model includes a default calibration file.

NumberOfFrames — Total number of point clouds
positive integer

This property is read-only.

Total number of point clouds in the file, specified as a positive integer.

Duration — Total duration of file in seconds
duration scalar

This property is read-only.

Total duration of the file, specified as a duration scalar, in seconds.

StartTime — Timestamp of first point cloud reading
duration scalar

This property is read-only.

Timestamp of the first point cloud, specified as a duration scalar in seconds.

2 Classes

2-162

Start and end times are specified relative to the previous whole hour. For instance, if the file is
recorded for 7 minutes from 13:58 to 14:05, then:

• StartTime = 58 min = 3480 s
• EndTime = StartTime + 7 min = 65 min = 3900 s

EndTime — Timestamp of last point cloud reading
duration scalar

This property is read-only.

Timestamp of the last point cloud reading, specified as a duration scalar, in seconds.

Start and end times are relative to the whole hour. For example, if the data is recorded over the 7
minutes from 1:58 PM to 2:05 PM, then:

• StartTime = 58 min = 3840 s
• EndTime = StartTime + 7 min = 65 min = 3900 s

Timestamps — Timestamp of point cloud frames
duration vector

This property is read-only.

Timestamps of the point cloud frames in seconds, specified as a duration vector. The length of the
vector is equal to the value of the NumberOfFrames property. The value of the first element in the
vector is the same as that of the StartTime property. You can use this property to read point cloud
frames captured at different times.

For example, read the timestamp of a point cloud frame from the Timestamps property. Use the start
time as an input for the readFrame object function to read the corresponding point cloud frame.

veloReader = velodyneROSMessageReader(msgs,'HDL32E')
frameTime = veloReader.Timestamps(10);
ptCloud = readFrame(veloReader,frameTime);

CurrentTime — Timestamp of current point cloud
duration scalar

Timestamp of the current point cloud reading, specified as a duration scalar, in seconds. As you
read point clouds using the readFrame object function, the object updates this property with the
most recently read point cloud. You can use the reset object function to reset this property to the
default value. The default value matches the StartTime property.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: (OrganizePoints=true) returns an organized point cloud.

CalibrationFile — Calibration XML file
'' (default) | string

 velodyneROSMessageReader

2-163

Calibration XML file, specified as a string. If you do not specify a calibration file, the reader selects a
default calibration file containing data from the Velodyne device manual.

OrganizePoints — Logical to set the structure for the output point cloud
true (default) | false

Logical to set the structure for the output point cloud, specified as a numeric or logical 1 (true) or 0
(false).

To return an organized point cloud structure, set OrganizePoints to true. For an organized point
cloud, every row represents a separate laser scan, and the number of columns is based on the
horizontal angle resolution of the sensor.

To return an organized point cloud structure, set OrganizePoints to false.

Object Functions
hasFrame Determine if another Velodyne point cloud is available in the ROS messages
readFrame Read point cloud frame from ROS message
reset Reset CurrentTime property of velodyneROSMessageReader object to default value

Examples

Work with Velodyne ROS Messages

Velodyne ROS messages store data in a format that requires some interpretation before it can be
used for further processing. MATLAB® can help you by formatting Velodyne ROS messages for easy
use. In this example, you can explore how VelodyneScan messages from a Velodyne LiDAR are
handled.

Prerequisites: “Work with Basic ROS Messages”

Load Sample Messages

Load sample Velodyne messages. These messages are populated with data gathered from Velodyne
LiDAR sensor.

load("lidarData_ConstructionRoad.mat")

VelodyneScan Messages

VelodyneScan messages are ROS messages that contain Velodyne LIDAR scan packets. You can see
the standard ROS format for a VelodyneScan message by creating an empty message of the
appropriate type. Use messages in structure format for better performance.

emptyveloScan = rosmessage("velodyne_msgs/VelodyneScan","DataFormat","struct")

emptyveloScan = struct with fields:
 MessageType: 'velodyne_msgs/VelodyneScan'
 Header: [1×1 struct]
 Packets: [0×1 struct]

Since you created an empty message, emptyveloScan does not contain any meaningful data. For
convenience, the loaded lidarData_ConstructionRoad.mat file contains a set of VelodyneScan

2 Classes

2-164

messages that are fully populated and stored in the msgs variable. Each element in the msgs cell
array is a VelodyneScan ROS message struct. The primary data in each VelodyneScan message is
in the Packets property, it contains multiple VelodynePacket messages. You can see the standard
ROS format for a VelodynePacket message by creating an empty message of the appropriate type.

emptyveloPkt = rosmessage("velodyne_msgs/VelodynePacket","DataFormat","struct")

emptyveloPkt = struct with fields:
 MessageType: 'velodyne_msgs/VelodynePacket'
 Stamp: [1×1 struct]
 Data: [1206×1 uint8]

Create Velodyne ROS Message Reader

The velodyneROSMessageReader object reads point cloud data from VelodyneScan ROS
messages based on their specified model type. Note that providing an incorrect device model may
result in improperly calibrated point clouds. This example uses messages from the "HDL32E" model.

veloReader = velodyneROSMessageReader(msgs,"HDL32E")

veloReader =
 velodyneROSMessageReader with properties:

 VelodyneMessages: {28×1 cell}
 DeviceModel: 'HDL32E'
 CalibrationFile: 'M:\jobarchive\Bdoc21b\2021_06_16_h16m50s15_job1697727_pass\matlab\toolbox\shared\pointclouds\utilities\velodyneFileReaderConfiguration\HDL32E.xml'
 NumberOfFrames: 55
 Duration: 2.7477 sec
 StartTime: 1145.2 sec
 EndTime: 1147.9 sec
 Timestamps: [1145.2 sec 1145.2 sec 1145.3 sec 1145.3 sec 1145.4 sec 1145.4 sec 1145.5 sec 1145.5 sec 1145.6 sec 1145.6 sec 1145.7 sec 1145.7 sec 1145.8 sec 1145.8 sec 1145.9 sec 1145.9 sec …]
 CurrentTime: 1145.2 sec

Extract Point Clouds

You can extract point clouds from the raw packets message with the help of this
velodyneROSMessageReader object. By providing a specific frame number or timestamp, one point
cloud can be extracted from velodyneROSMessageReader object using the readFrame object
function. If you call readFrame without a frame number or timestamp, it extracts the next point
cloud in the sequence based on the CurrentTime property.

Create a duration scalar that represents one second after the first point cloud reading.

timeDuration = veloReader.StartTime + seconds(1);

Read the first point cloud recorded at or after the given time duration.

ptCloudObj = readFrame(veloReader,timeDuration);

Access Location data in the point cloud.

ptCloudLoc = ptCloudObj.Location;

Reset the CurrentTime property of veloReader to the default value

reset(veloReader)

 velodyneROSMessageReader

2-165

Display All Point Clouds

You can also loop through all point clouds in the input Velodyne ROS messages.

Define x-, y-, and z-axes limits for pcplayer in meters. Label the axes.

xlimits = [-60 60];
ylimits = [-60 60];
zlimits = [-20 20];

Create the point cloud player.

player = pcplayer(xlimits,ylimits,zlimits);

Label the axes.

xlabel(player.Axes,"X (m)");
ylabel(player.Axes,"Y (m)");
zlabel(player.Axes,"Z (m)");

The first point cloud of interest is captured at 0.3 second into the input messages. Set the
CurrentTime property to that time to begin reading point clouds from there.

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);

Display the point cloud stream for 2 seconds. To check if a new frame is available and continue past 2
seconds, remove the last while condition. Iterate through the file by calling readFrame to read in
point clouds. Display them using the point cloud player.

while(hasFrame(veloReader) && isOpen(player) && (veloReader.CurrentTime < veloReader.StartTime + seconds(2)))
 ptCloudObj = readFrame(veloReader);
 view(player,ptCloudObj.Location,ptCloudObj.Intensity);
 pause(0.1);
end

2 Classes

2-166

Tips
• Providing an incorrect device model will result in improperly calibrated point clouds.
• Not providing a calibration file can lead to inaccurate results.

Version History
Introduced in R2020b

See Also
pointCloud | hasFrame | readFrame | reset

 velodyneROSMessageReader

2-167

pcplayer
Visualize streaming 3-D point cloud data

Description
Visualize 3-D point cloud data streams from devices such as Microsoft®Kinect®.

To improve performance, pcplayer automatically downsamples the rendered point cloud during
interaction with the figure. The downsampling occurs only for rendering the point cloud and does not
affect the saved points.

Creation

Syntax
player = pcplayer(xlimits,ylimits,zlimits)
player = pcplayer(xlimits,ylimits,zlimits,Name,Value)

Description

player = pcplayer(xlimits,ylimits,zlimits) returns a player with xlimits,ylimits, and
zlimits set for the axes limits.

player = pcplayer(xlimits,ylimits,zlimits,Name,Value) returns a player with additional
properties specified by one or more Name,Value pair arguments.

Input Arguments

xlimits — Range of x-axis coordinates
1-by-2 vector

Range of x-axis coordinates, specified as a 1-by-2 vector in the format [min max]. pcplayer does not
display data outside these limits.

ylimits — Range of y-axis coordinates
1-by-2 vector

Range of y-axis coordinates, specified as a 1-by-2 vector in the format [min max]. pcplayer does not
display data outside these limits.

zlimits — Range of z-axis coordinates
1-by-2 vector

Range of z-axis coordinates, specified as a 1-by-2 vector in the format [min max].pcplayer does not
display data outside these limits.

2 Classes

2-168

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'VerticalAxisDir', 'Up'.

MarkerSize — Diameter of marker
6 (default) | positive scalar

Diameter of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive
scalar. The value specifies the approximate diameter of the point marker. MATLAB graphics defines
the unit as points. A marker size larger than six can reduce the rendering performance.

VerticalAxis — Vertical axis
'Z' (default) | 'X' | 'Y'

Vertical axis, specified as the comma-separated pair consisting of 'VerticalAxis' and 'X', 'Y', or
'Z'. When you reload a saved figure, any action on the figure resets the vertical axis to the z-axis.

VerticalAxisDir — Vertical axis direction
'Up' (default) | 'Down'

Vertical axis direction, specified as the comma-separated pair consisting of 'VerticalAxisDir' and
'Up' or 'Down'. When you reload a saved figure, any action on the figure resets the direction to the
up direction.

Properties
Axes — Player axes handle
axes graphics object

Player axes handle, specified as an axes graphics object.

Usage
Color and Data Point Values in Figure

To view point data or modify color display values, hover over the axes toolbar and select one of the
following options.

 pcplayer

2-169

Feature Description
Datatip Click Data Tips to view the data point values for any point in the point

cloud figure. For a normal point cloud, the Data Tips displays the x,y,z
values. Additional data properties for the depth image and lidar are:

Point Cloud Data Data Value Properties
Depth image (RGB-D sensor) Color, row, column
Lidar Intensity, range, azimuth angle,

elevation angle, row, column

Background color Click Rotate and then right-click in the figure for background options.
Colormap value Click Rotate and then right-click in the figure for colormap options.

You can modify colormap values for the coordinate and range values
available, depending on the type of point cloud displayed.

View Click Rotate to change the viewing angle of the point cloud figure to
the XZ, ZX,YZ, ZY, XY, or the YX plane. Click Restore View to reset
the viewing angle.

OpenGL Option

pcplayer supports the 'opengl' option for the Renderer figure property only.

Object Functions
hide Hide player figure
isOpen Visible or hidden status for player
show Show player
view Display point cloud

Examples

Terminate a Point Cloud Processing Loop

Create the player and add data.

player = pcplayer([0 1],[0 1],[0 1]);

Display continuous player figure. Use the isOpen function to check if player figure window is open.

while isOpen(player)
 ptCloud = pointCloud(rand(1000,3,'single'));
 view(player,ptCloud);
end

Terminate while-loop by closing pcplayer figure window.

Version History
Introduced in R2020b

2 Classes

2-170

See Also
pointCloud

 pcplayer

2-171

hide
Hide player figure

Syntax
hide(player)

Description
hide(player) hides the figure. To redisplay the player, use show(player).

Input Arguments
player — Player
object

Video player, specified as a pcplayer object.

Version History
Introduced in R2020b

2 Classes

2-172

isOpen
Visible or hidden status for player

Syntax
isOpen(player)

Description
isOpen(player) returns true or false to indicate whether the player is visible.

Input Arguments
player — Player
object

Video player, specified as a pcplayer object.

Version History
Introduced in R2020b

 isOpen

2-173

show
Show player

Syntax
show(player)

Description
show(player) makes the player figure visible again after closing or hiding it.

Input Arguments
player — Player
object

Player for visualizing data streams, specified as a pcplayer object. Use this method to view the
figure after you have removed it from display. For example, after you x-out of a figure and you want to
view it again. This is particularly useful to use after a while loop that contains display code ends.

Version History
Introduced in R2020b

2 Classes

2-174

view
Display point cloud

Syntax
view(player,ptCloud)
view(player,xyzPoints)
view(player,xyzPoints,color)
view(player,xyzPoints,colorMap)

Description
view(player,ptCloud) displays a point cloud in the pcplayer figure window, player. The
points, locations, and colors are stored in the ptCloud object.

view(player,xyzPoints) displays the points of a point cloud at the locations specified by the
xyzPoints matrix. The color of each point is determined by the z value.

view(player,xyzPoints,color) displays a point cloud with colors specified by color.

view(player,xyzPoints,colorMap) displays a point cloud with colors specified by colorMap.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. The object contains the locations, intensities, and RGB
colors to render the point cloud.

Point Cloud Property Color Rendering Result
Location only Maps the z-value to a color value in the current

color map.
Location and Intensity Maps the intensity to a color value in the current

color map.
Location and Color Use provided color.
Location, Intensity, and Color Use provided color.

player — Player
pcplayer object

Player for visualizing 3-D point cloud data streams, specified as a pcplayer object.

xyzPoints — Point cloud x, y, and z locations
M-by-3 numeric matrix | M-by-N-by-3 numeric matrix

Point cloud x, y, and z locations, specified as either an M-by-3 or an M-by-N-by-3 numeric matrix. The
M-by-N-by-3 numeric matrix is commonly referred to as an organized point cloud. The xyzPoints

 view

2-175

numeric matrix contains M or M-by-N [x,y,z] points. The z values in the numeric matrix, which
generally correspond to depth or elevation, determine the color of each point.

color — Point cloud color
1-by-3 RGB vector | short name of color | long name of color | M-by-3 matrix | M-by-N-by-3 matrix

Point cloud color of points, specified as one of:

• RGB triplet
• A color name or a short name
• M-by-3 matrix
• M-by-N-by-3 matrix

Color Name Short Name RGB Triplet Appearance
"red" "r" [1 0 0]
"green" "g" [0 1 0]
"blue" "b" [0 0 1]
"cyan" "c" [0 1 1]
"magenta" "m" [1 0 1]
"yellow" "y" [1 1 0]
"black" "k" [0 0 0]
"white" "w" [1 1 1]

You can specify the same color for all points or a different color for each point. When you set color
to single or double, the RGB values range between [0, 1]. When you set color to uint8, the
values range between [0, 255].

Points Input Color Selection Valid Values of C
xyzPoints Same color for all

points
1-by-3 RGB vector, or the short or long name of a color

Different color for
each point

M-by-3 matrix or M-by-N-by-3 matrix containing RGB values for each
point.

colorMap — Point cloud color map
M-by-1 vector | M-by-N matrix

Point cloud color of points, specified as one of:

• M-by-1 vector
• M-by-N matrix

Points Input Color Selection Valid Values of C
xyzPoints Different color for

each point
Vector or M-by-N matrix. The matrix must contain values that are
linearly mapped to a color in the current colormap.

2 Classes

2-176

Version History
Introduced in R2020b

 view

2-177

pointCloud
Object for storing 3-D point cloud

Description
The pointCloud object creates point cloud data from a set of points in 3-D coordinate system. The
point cloud data is stored as an object with the properties listed in “Properties” on page 2-179. Use
“Object Functions” on page 2-180 to retrieve, select, and remove desired points from the point cloud
data.

Creation

Syntax
ptCloud = pointCloud(xyzPoints)
ptCloud = pointCloud(xyzPoints,Name,Value)

Description

ptCloud = pointCloud(xyzPoints) returns a point cloud object with coordinates specified by
xyzPoints.

ptCloud = pointCloud(xyzPoints,Name,Value) creates a pointCloud object with properties
specified as one or more Name,Value pair arguments. For example,
pointCloud(xyzPoints,'Color',[0 0 0]) sets the Color property of the point xyzPoints as
[0 0 0]. Enclose each property name in quotes. Any unspecified properties have default values.

Input Arguments

xyzPoints — 3-D coordinate points
M-by-3 list of points | M-by-N-by-3 array for organized point cloud

3-D coordinate points, specified as an M-by-3 list of points or an M-by-N-by-3 array for an organized
point cloud. The 3-D coordinate points specify the x, y, and z positions of a point in the 3-D coordinate
space. The first two dimensions of an organized point cloud correspond to the scanning order from
sensors such as RGBD or lidar. This argument sets the Location property.
Data Types: single | double

Output Arguments

ptCloud — Point cloud
pointCloud object

Point cloud, returned as a pointCloud object with the properties listed in “Properties” on page 2-
179.

2 Classes

2-178

Properties
Location — Position of the points in 3-D coordinate space
M-by-3 array | M-by-N-by-3 array

This property is read-only.

Position of the points in 3-D coordinate space, specified as an M-by-3 or M-by-N-by-3 array. Each
entry specifies the x, y, and z coordinates of a point in the 3-D coordinate space. You cannot set this
property as a name-value pair. Use the xyzPoints input argument.
Data Types: single | double

Color — Point cloud color
[] (default) | M-by-3 array | M-by-N-by-3 array

Point cloud color, specified as an M-by-3 or M-by-N-by-3 array. Use this property to set the color of
points in point cloud. Each entry specifies the RGB color of a point in the point cloud data. Therefore,
you can specify the same color for all points or a different color for each point.

• The specified RGB values must lie within the range [0, 1], when you specify the data type for
Color as single or double.

• The specified RGB values must lie within the range [0, 255], when you specify the data type for
Color as uint8.

Coordinates Valid assignment of Color
M-by-3 array M-by-3 array containing RGB values for each point
M-by-N-by-3 array M-by-N-by-3 array containing RGB values for each point

Data Types: uint8

Normal — Surface normals
[] (default) | M-by-3 array | M-by-N-by-3 array

Surface normals, specified as a M-by-3 or M-by-N-by-3 array. Use this property to specify the normal
vector with respect to each point in the point cloud. Each entry in the surface normals specifies the x,
y, and z component of a normal vector.

Coordinates Surface Normals
M-by-3 array M-by-3 array, where each row contains a corresponding normal vector.
M-by-N-by-3 array M-by-N-by-3 array containing a 1-by-1-by-3 normal vector for each point.

Data Types: single | double

Intensity — Grayscale intensities
[] (default) | M-by-1 vector | M-by-N matrix

Grayscale intensities at each point, specified as a M-by-1 vector or M-by-N matrix. The function maps
each intensity value to a color value in the current colormap.

Coordinates Intensity
M-by-3 array M-by-1 vector, where each row contains a corresponding intensity value.

 pointCloud

2-179

Coordinates Intensity
M-by-N-by-3 array M-by-N matrix containing intensity value for each point.

Data Types: single | double | uint8

Count — Number of points
positive integer

This property is read-only.

Number of points in the point cloud, stored as a positive integer.

XLimits — Range of x coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along x-axis, stored as a 1-by-2 vector.

YLimits — Range of y coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along y-axis, stored as a 1-by-2 vector.

ZLimits — Range of z coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along z-axis, stored as a 1-by-2 vector.

Object Functions
findNearestNeighbors Find nearest neighbors of a point in point cloud
findNeighborsInRadius Find neighbors within a radius of a point in the point cloud
findPointsInROI Find points within a region of interest in the point cloud
removeInvalidPoints Remove invalid points from point cloud
select Select points in point cloud
copy Copy array of handle objects

Tips
The pointCloud object is a handle object. If you want to create a separate copy of a point cloud,
you can use the MATLAB copy method.
ptCloudB = copy(ptCloudA)

If you want to preserve a single copy of a point cloud, which can be modified by point cloud functions,
use the same point cloud variable name for the input and output.
ptCloud = pcFunction(ptCloud)

2 Classes

2-180

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation for variable input sizes is not optimized. Consider using constant size inputs
for an optimized code generation.

• GPU code generation supports the 'Color', 'Normal', and 'Intensity' name-value pairs.
• GPU code generation supports the findNearestNeighbors, findNeighborsInRadius,

findPointsInROI, removeInvalidPoints, and select methods.
• For very large inputs, the memory requirements of the algorithm may exceed the GPU device

limits. In such cases, consider reducing the input size to proceed with code generation.

See Also
Objects
pcplayer

Functions
findNearestNeighbors | findNeighborsInRadius | findPointsInROI |
removeInvalidPoints | select

 pointCloud

2-181

findNearestNeighbors
Find nearest neighbors of a point in point cloud

Syntax
[indices,dists] = findNearestNeighbors(ptCloud,point,K)
[indices,dists] = findNearestNeighbors(___ ,Name,Value)

Description
[indices,dists] = findNearestNeighbors(ptCloud,point,K) returns the indices for the
K-nearest neighbors of a query point in the input point cloud. ptCloud can be an unorganized or
organized point cloud. The K-nearest neighbors of the query point are computed by using the Kd-tree
based search algorithm. This function requires a Computer Vision Toolbox license.

[indices,dists] = findNearestNeighbors(___ ,Name,Value) specifies options using one or
more name-value arguments in addition to the input arguments in the preceding syntaxes.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

point — Query point
three-element vector of form [x y z]

Query point, specified as a three-element vector of form [x y z].

K — Number of nearest neighbors
positive integer

Number of nearest neighbors, specified as a positive integer.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: findNearestNeighbors(ptCloud,point,k,'Sort',true)

Sort — Sort indices
false (default) | true

Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort
to true, the returned indices are sorted in the ascending order based on the distance from a query
point. To turn off sorting, set Sort to false.

2 Classes

2-182

MaxLeafChecks — Number of leaf nodes to check
Inf (default) | integer

Number of leaf nodes to check, specified as a comma-separated pair consisting of 'MaxLeafChecks'
and an integer. When you set this value to Inf, the entire tree is searched. When the entire tree is
searched, it produces exact search results. Increasing the number of leaf nodes to check increases
accuracy, but reduces efficiency.

Note The name-value argument 'MaxLeafChecks' is valid only with Kd-tree based search method.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains K linear indices of the
nearest neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean distances
between the query point and its nearest neighbors.

Version History
Introduced in R2020b

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation in non-host platforms, the value for 'MaxLeafChecks' must be set to the
default value Inf. If you specify values other than Inf, the function generates a warning and
automatically assigns the default value for 'MaxLeafChecks'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

 findNearestNeighbors

2-183

• For GPU code generation, the 'MaxLeafChecks' name-value pair option is ignored.

See Also
Objects
pointCloud

Functions
findNeighborsInRadius | findPointsInROI | removeInvalidPoints | select

2 Classes

2-184

findNeighborsInRadius
Find neighbors within a radius of a point in the point cloud

Syntax
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius)
[indices,dists] = findNeighborsInRadius(___ ,Name,Value)

Description
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius) returns the indices
of neighbors within a radius of a query point in the input point cloud. ptCloud can be an
unorganized or organized point cloud. The neighbors within a radius of the query point are computed
by using the Kd-tree based search algorithm. This function requires a Computer Vision Toolbox
license.

[indices,dists] = findNeighborsInRadius(___ ,Name,Value) specifies options using one
or more name-value pair arguments in addition to the input arguments in the preceding syntaxes.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

point — Query point
three-element vector of form [x y z]

Query point, specified as a three-element vector of form [x y z].

radius — Search radius
scalar

Search radius, specified as a scalar. The function finds the neighbors within the specified radius
around a query point in the input point cloud.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: findNeighborsInRadius(ptCloud,point,radius,'Sort',true)

Sort — Sort indices
false (default) | true

 findNeighborsInRadius

2-185

Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort
to true, the returned indices are sorted in the ascending order based on the distance from a query
point. To turn off sorting, set Sort to false.

MaxLeafChecks — Number of leaf nodes
Inf (default) | integer

Number of leaf nodes, specified as a comma-separated pair consisting of 'MaxLeafChecks' and an
integer. When you set this value to Inf, the entire tree is searched. When the entire tree is searched,
it produces exact search results. Increasing the number of leaf nodes to check increases accuracy,
but reduces efficiency.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear indices of the
radial neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean distances
between the query point and its radial neighbors.

Version History
Introduced in R2020b

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation in non-host platforms, the value for 'MaxLeafChecks' must be set to the
default value Inf. If you specify values other than Inf, the function generates a warning and
automatically assigns the default value for 'MaxLeafChecks'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

2 Classes

2-186

• For GPU code generation, the 'MaxLeafChecks' name-value pair option is ignored.

See Also
Objects
pointCloud

Functions
findNearestNeighbors | findPointsInROI | removeInvalidPoints | select

 findNeighborsInRadius

2-187

findPointsInROI
Find points within a region of interest in the point cloud

Syntax
indices = findPointsInROI(ptCloud,roi)

Description
indices = findPointsInROI(ptCloud,roi) returns the points within a region of interest (ROI)
in the input point cloud. The points within the specified ROI are obtained using a Kd-tree based
search algorithm. This function requires a Computer Vision Toolbox license.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

roi — Region of interest
six-element vector of form [xmin xmax ymin ymax zmin zmax]

Region of interest, specified as a six-element vector of form [xmin xmax ymin ymax zmin zmax],
where:

• xmin and xmax are the minimum and the maximum limits along the x-axis respectively.
• ymin and ymax are the minimum and the maximum limits along the y-axis respectively.
• zmin and zmax are the minimum and the maximum limits along the z-axis respectively.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear indices of the
ROI points stored in the point cloud.

Version History
Introduced in R2020b

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.

2 Classes

2-188

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

-

See Also
Objects
pointCloud

Functions
findNearestNeighbors | findNeighborsInRadius | removeInvalidPoints | select

 findPointsInROI

2-189

removeInvalidPoints
Remove invalid points from point cloud

Syntax
[ptCloudOut,indices] = removeInvalidPoints(ptCloud)

Description
[ptCloudOut,indices] = removeInvalidPoints(ptCloud) removes points with Inf or NaN
coordinate values from point cloud and returns the indices of valid points. This function requires a
Computer Vision Toolbox license.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

Output Arguments
ptCloudOut — Point cloud with points removed
pointCloud object

Point cloud, returned as a pointCloud object with Inf or NaN coordinates removed.

Note The output is always an unorganized (X-by-3) point cloud. If the input ptCloud is an organized
point cloud (M-by-N-by-3), the function returns the output as an unorganized point cloud.

indices — Indices of valid points
vector

Indices of valid points in the point cloud, specified as a vector.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

2 Classes

2-190

See Also
Objects
pointCloud

Functions
findNearestNeighbors | findNeighborsInRadius | findPointsInROI | select

 removeInvalidPoints

2-191

select
Select points in point cloud

Syntax
ptCloudOut = select(ptCloud,indices)
ptCloudOut = select(ptCloud,row,column)
ptCloudOut = select(___ ,'OutputSize',outputSize)

Description
ptCloudOut = select(ptCloud,indices) returns a pointCloud object containing only the
points that are selected using linear indices. This function requires a Computer Vision Toolbox
license.

ptCloudOut = select(ptCloud,row,column) returns a pointCloud object containing only the
points that are selected using row and column subscripts. This syntax applies only if the input is an
organized point cloud data of size M-by-N-by-3.

ptCloudOut = select(___ ,'OutputSize',outputSize) returns the selected points as a
pointCloud object of size specified by outputSize.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

indices — Indices of selected points
vector

Indices of selected points, specified as a vector.

row — Row indices
vector

Row indices, specified as a vector. This argument applies only if the input is an organized point cloud
data of size M-by-N-by-3.

column — Column indices
vector

Column indices, specified as a vector. This argument applies only if the input is an organized point
cloud data of size M-by-N-by-3.

outputSize — Size of output point cloud
'selected' (default) | 'full'

Size of the output point cloud, ptCloudOut, specified as 'selected' or 'full'.

2 Classes

2-192

• If the size is 'selected', then the output contains only the selected points from the input point
cloud, ptCloud.

• If the size is 'full', then the output is same size as the input point cloud ptCloud. Cleared
points are filled with NaN and the color is set to [0 0 0].

Output Arguments
ptCloudOut — Selected point cloud
pointCloud object

Point cloud, returned as a pointCloud object.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Objects
pointCloud

Functions
findNearestNeighbors | findNeighborsInRadius | findPointsInROI |
removeInvalidPoints

 select

2-193

Methods

3

getFeedbackMessage
Create new action feedback message

Syntax
msg = getFeedbackMessage(server)

Description
msg = getFeedbackMessage(server) creates and returns an empty message, msg, whose
message type is determined by the action type of server. The format of msg is determined by the
DataFormat property of the action server. This message is the default feedback message that this
server sends to the client while executing a goal.

Examples

Create a ROS Action Server and Execute a Goal

This example shows how to create a ROS action server, connect an action client to it, receive goal,
and execute it.

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.288 seconds.
Initializing ROS master on http://172.30.131.134:57592.
Initializing global node /matlab_global_node_01849 with NodeURI http://bat6234win64:57678/ and MasterURI http://localhost:57592.

Set up an action server for calculating Fibonacci sequence. Use structures for the ROS message data
format. Use fibbonacciExecution on page 3-3 function as the callback.

cb = @fibonacciExecution;
server = rosactionserver("/fibonacci","actionlib_tutorials/Fibonacci",ExecuteGoalFcn=cb,DataFormat="struct")

server =
 SimpleActionServer with properties:

 ActionName: '/fibonacci'
 ActionType: 'actionlib_tutorials/Fibonacci'
 ExecuteGoalFcn: @fibonacciExecution
 DataFormat: 'struct'

Create action client and send a goal to the server to calculate the Fibonacci sequence up to 10 terms
past the first two terms, 0 and 1. Display the result sequence.

client = rosactionclient("/fibonacci","actionlib_tutorials/Fibonacci",DataFormat="struct");
goal = rosmessage(client);
goal.Order = int32(10);

3 Methods

3-2

result = sendGoalAndWait(client,goal);
result.Sequence

ans = 12x1 int32 column vector

 0
 1
 1
 2
 3
 5
 8
 13
 21
 34
 ⋮

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_01849 with NodeURI http://bat6234win64:57678/ and MasterURI http://localhost:57592.
Shutting down ROS master on http://172.30.131.134:57592.

Supporting Functions

The callback function fibbonacciExecution is executed every time the server receives a goal
execution request from the client. This function checks if the goal has been preempted, executes the
goal and sends feedback to the client during goal execution.

function [result,success] = fibonacciExecution(src,goal,defaultFeedback,defaultResult)

 % Initialize variables
 success = true;
 result = defaultResult;
 feedback = defaultFeedback;
 feedback.Sequence = int32([0 1]);

 for k = 1:goal.Order
 % Check that the client has not canceled or sent a new goal
 if isPreemptRequested(src)
 success = false;
 break
 end

 % Send feedback to the client periodically
 feedback.Sequence(end+1) = feedback.Sequence(end-1) + feedback.Sequence(end);
 sendFeedback(src,feedback)

 % Pause to allow time to complete other callbacks (like client feedback)
 pause(0.2)
 end

 if success
 result.Sequence = feedback.Sequence;
 end

 getFeedbackMessage

3-3

end

Input Arguments
server — ROS action server
SimpleActionServer object handle

ROS action server, specified as a SimpleActionServer object handle.

Output Arguments
msg — Default feedback message
ROS message

Default feedback message, returned as a ROS message whose type is determined by the action type
of server.

Version History
Introduced in R2022a

See Also
rosactionserver | sendFeedback | rosActionServerExecuteGoalFcn | rosmessage

3 Methods

3-4

isPreemeptRequested
Check if a goal has been preempted

Syntax
status = isPreemptRequested(server)

Description
status = isPreemptRequested(server) checks whether the goal currently being executed by
the action server, server, has been preempted and returns the status accordingly. The action client
connected to server initiates the goal preemption either by cancelling the current goal or sending a
new goal to execute.

Examples

Create a ROS Action Server and Execute a Goal

This example shows how to create a ROS action server, connect an action client to it, receive goal,
and execute it.

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.288 seconds.
Initializing ROS master on http://172.30.131.134:57592.
Initializing global node /matlab_global_node_01849 with NodeURI http://bat6234win64:57678/ and MasterURI http://localhost:57592.

Set up an action server for calculating Fibonacci sequence. Use structures for the ROS message data
format. Use fibbonacciExecution on page 3-6 function as the callback.

cb = @fibonacciExecution;
server = rosactionserver("/fibonacci","actionlib_tutorials/Fibonacci",ExecuteGoalFcn=cb,DataFormat="struct")

server =
 SimpleActionServer with properties:

 ActionName: '/fibonacci'
 ActionType: 'actionlib_tutorials/Fibonacci'
 ExecuteGoalFcn: @fibonacciExecution
 DataFormat: 'struct'

Create action client and send a goal to the server to calculate the Fibonacci sequence up to 10 terms
past the first two terms, 0 and 1. Display the result sequence.

client = rosactionclient("/fibonacci","actionlib_tutorials/Fibonacci",DataFormat="struct");
goal = rosmessage(client);
goal.Order = int32(10);

 isPreemeptRequested

3-5

result = sendGoalAndWait(client,goal);
result.Sequence

ans = 12x1 int32 column vector

 0
 1
 1
 2
 3
 5
 8
 13
 21
 34
 ⋮

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_01849 with NodeURI http://bat6234win64:57678/ and MasterURI http://localhost:57592.
Shutting down ROS master on http://172.30.131.134:57592.

Supporting Functions

The callback function fibbonacciExecution is executed every time the server receives a goal
execution request from the client. This function checks if the goal has been preempted, executes the
goal and sends feedback to the client during goal execution.

function [result,success] = fibonacciExecution(src,goal,defaultFeedback,defaultResult)

 % Initialize variables
 success = true;
 result = defaultResult;
 feedback = defaultFeedback;
 feedback.Sequence = int32([0 1]);

 for k = 1:goal.Order
 % Check that the client has not canceled or sent a new goal
 if isPreemptRequested(src)
 success = false;
 break
 end

 % Send feedback to the client periodically
 feedback.Sequence(end+1) = feedback.Sequence(end-1) + feedback.Sequence(end);
 sendFeedback(src,feedback)

 % Pause to allow time to complete other callbacks (like client feedback)
 pause(0.2)
 end

 if success
 result.Sequence = feedback.Sequence;
 end

3 Methods

3-6

end

Input Arguments
server — ROS action server
SimpleActionServer object handle

ROS action server, specified as a SimpleActionServer object handle.

Output Arguments
status — Status of goal preemption
logical scalar

Status of goal preemption, retuned as a logical scalar. If the goal has been preempted, the function
returns the status as true.

Version History
Introduced in R2022a

See Also
rosactionserver | rosActionServerExecuteGoalFcn

 isPreemeptRequested

3-7

sendFeedback
Send feedback to action client during goal execution

Syntax
sendFeedback(server,feedbackMsg)

Description
sendFeedback(server,feedbackMsg) sends the feedback message, feedbackMsg, to the action
client that sent the goal currently being executed by the action server, server.

Examples

Create a ROS Action Server and Execute a Goal

This example shows how to create a ROS action server, connect an action client to it, receive goal,
and execute it.

Connect to a ROS network.

rosinit

Launching ROS Core...
...Done in 3.288 seconds.
Initializing ROS master on http://172.30.131.134:57592.
Initializing global node /matlab_global_node_01849 with NodeURI http://bat6234win64:57678/ and MasterURI http://localhost:57592.

Set up an action server for calculating Fibonacci sequence. Use structures for the ROS message data
format. Use fibbonacciExecution on page 3-9 function as the callback.

cb = @fibonacciExecution;
server = rosactionserver("/fibonacci","actionlib_tutorials/Fibonacci",ExecuteGoalFcn=cb,DataFormat="struct")

server =
 SimpleActionServer with properties:

 ActionName: '/fibonacci'
 ActionType: 'actionlib_tutorials/Fibonacci'
 ExecuteGoalFcn: @fibonacciExecution
 DataFormat: 'struct'

Create action client and send a goal to the server to calculate the Fibonacci sequence up to 10 terms
past the first two terms, 0 and 1. Display the result sequence.

client = rosactionclient("/fibonacci","actionlib_tutorials/Fibonacci",DataFormat="struct");
goal = rosmessage(client);
goal.Order = int32(10);
result = sendGoalAndWait(client,goal);
result.Sequence

3 Methods

3-8

ans = 12x1 int32 column vector

 0
 1
 1
 2
 3
 5
 8
 13
 21
 34
 ⋮

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_01849 with NodeURI http://bat6234win64:57678/ and MasterURI http://localhost:57592.
Shutting down ROS master on http://172.30.131.134:57592.

Supporting Functions

The callback function fibbonacciExecution is executed every time the server receives a goal
execution request from the client. This function checks if the goal has been preempted, executes the
goal and sends feedback to the client during goal execution.

function [result,success] = fibonacciExecution(src,goal,defaultFeedback,defaultResult)

 % Initialize variables
 success = true;
 result = defaultResult;
 feedback = defaultFeedback;
 feedback.Sequence = int32([0 1]);

 for k = 1:goal.Order
 % Check that the client has not canceled or sent a new goal
 if isPreemptRequested(src)
 success = false;
 break
 end

 % Send feedback to the client periodically
 feedback.Sequence(end+1) = feedback.Sequence(end-1) + feedback.Sequence(end);
 sendFeedback(src,feedback)

 % Pause to allow time to complete other callbacks (like client feedback)
 pause(0.2)
 end

 if success
 result.Sequence = feedback.Sequence;
 end

 sendFeedback

3-9

end

Input Arguments
server — ROS action server
SimpleActionServer object handle

ROS action server, specified as a SimpleActionServer object handle.

feedbackMsg — Feedback message for action client
ROS message

Feedback message for action client, specified as a ROS message. The type and format of the
feedbackMsg must match the ActionType and DataFormat properties of server, respectively.

Version History
Introduced in R2022a

See Also
rosactionserver | getFeedbackMessage | rosActionServerExecuteGoalFcn

3 Methods

3-10

rosActionServerExecuteGoalFcn
Return function handle for ROS action server callback

Syntax
cb = rosActionServerExecuteGoalFcn
cb = rosActionServerExecuteGoalFcn(Name=Value)

Description
rosActionServerExecuteGoalFcn provides a predefined callback framework for use as the goal
execution callback in a ROS action server. The callback framework is a set of callback functions, one
for each of these tasks the server must carry out during goal execution:

• Check if the goal is reached
• Execute items in every iteration towards the goal
• Construct feedback message for the action client
• Construct result message if the goal is preempted
• Construct result message if the goal is reached successfully

You can specify custom functions for these tasks by using the respective name-value arguments of
rosActionServerExecuteGoalFcn.

cb = rosActionServerExecuteGoalFcn returns a function handle, cb, with a predefined
callback framework for action server goal execution. You can specify cb as value for the
ExecuteGoalFcn name-value argument when you create the rosactionserver object. When you
use the function handle from this syntax in the action server, the callback immediately indicates that
the goal has been reached and returns the default result message.

cb = rosActionServerExecuteGoalFcn(Name=Value) specifies additional options using one or
more name-value arguments. To customize the behavior of the predefined callback framework,
specify handles of custom functions using the corresponding name-value arguments. The custom
functions must have two input arguments: a shared object containing UserData as the first, and an
appropriate ROS message as the second. Most functions must also provide appropriate output. For
more information about each function signature, see Name-Value Arguments on page 3-13.

Examples

Create Custom Callback for a ROS Action Server Using the Predefined Callback Framework

This example shows how to create a custom callback for a ROS action server using
rosActionServerExecuteGoalFcn, which provides a customizable predefined callback
framework.

Connect to a ROS network.

rosinit

 rosActionServerExecuteGoalFcn

3-11

Launching ROS Core...
...Done in 3.775 seconds.
Initializing ROS master on http://172.30.131.134:52530.
Initializing global node /matlab_global_node_23611 with NodeURI http://bat6234win64:57542/ and MasterURI http://localhost:52530.

Set up an action server callback for calculating the Fibonacci sequence using
rosActionServerExecuteGoalFcn. Specify the custom callback functions for the tasks in the
callback framework. All the callback functions use a shared object to store data. For definition of
these custom functions, see Supporting Functions on page 3-12.

% Store the first two terms 0 and 1 in shared object
fibSequence = int32([0 1]);
% Create the callback
cb = rosActionServerExecuteGoalFcn(IsGoalReachedFcn=@isGoalReached,...
 StepExecutionFcn=@nextFibNumber,...
 CreateFeedbackFcn=@assignUserDataToMessage,...
 CreateSuccessfulResultFcn=@assignUserDataToMessage,...
 StepDelay=0.2,...
 UserData=fibSequence);

Use the created custom callback, cb and set up an action server for calculating Fibonacci sequence.
Use structures for the ROS message data format.

server = rosactionserver("/fibonacci","actionlib_tutorials/Fibonacci",ExecuteGoalFcn=cb,DataFormat="struct");

Create action client and send a goal to the server, which calculates the first 10 terms in the Fibonacci
sequence. Display the result sequence.

client = rosactionclient("/fibonacci","actionlib_tutorials/Fibonacci",DataFormat="struct");
goal = rosmessage(client);
goal.Order = int32(10);
result = sendGoalAndWait(client,goal);
result.Sequence

ans = 10x1 int32 column vector

 0
 1
 1
 2
 3
 5
 8
 13
 21
 34

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_23611 with NodeURI http://bat6234win64:57542/ and MasterURI http://localhost:52530.
Shutting down ROS master on http://172.30.131.134:52530.

Supporting Functions

The function isGoalReached checks whether the goal is reached. In this case, it checks whether the
number of terms in the calculated Fibonacci sequence exceeds the goal from the client.

3 Methods

3-12

function status = isGoalReached(sharedObj,goal)
 status = numel(sharedObj.UserData) >= goal.Order;
end

The function nextFibNumber is the step execution function that calculates the next term in the
sequence in every iteration towards goal execution.

function nextFibNumber(sharedObj,~)
 sharedObj.UserData(end+1) = sharedObj.UserData(end-1) + sharedObj.UserData(end);
end

The function assignUserDataToMessage assigns the current sequence to the appropriate field in
the result message. In this specific case of Fibonacci action, the feedback message also uses the same
field, Sequence as the result message. Hence, this function can be used for both creating a feedback
message and result message to the client.

function msg = assignUserDataToMessage(sharedObj,msg)
 msg.Sequence = sharedObj.UserData;
end

Input Arguments
Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: StepDelay=0.01

IsGoalReachedFcn — Callback function to determine if goal is reached
function handle

Callback function to determine if the goal is reached, specified as a function handle. In the default
framework, this function always returns true. When specifying the handle for a custom function, the
function must have two input arguments: a shared object containing UserData as the first, and the
goal message as the second. This is an example function header signature:

function atGoal = isGoalReached(sharedObj,goalMsg)

You can use the data or resources in sharedObj.UserData to check the current state, determine
whether the goal is reached, and return true or false appropriately.
Example: @isGoalReached
Data Types: function_handle

StepExecutionFcn — Callback function to progress toward goal each iteration
empty (default) | function handle

Callback function to progress toward the goal each iteration, specified as a function handle. In the
default framework, StepExecutionFcn is empty, and no step function will be executed. When
specifying the handle for a custom function, the function must have two input arguments: a shared
object containing UserData as the first, and the goal message as the second. This is an example
function header signature:

function stepExecution(sharedObj,goalMsg)

 rosActionServerExecuteGoalFcn

3-13

You can use the data or resources in sharedObj.UserData as required to progress towards the
goal.
Example: @stepExecution
Data Types: function_handle

CreateFeedbackFcn — Callback function to construct feedback message each iteration
empty (default) | function handle

Callback function to construct a feedback message each iteration for the action client, specified as a
function handle. In the default framework, CreateFeedbackFcn is empty and no feedback will be
sent to the client. When specifying the handle for a custom function, the function must have two input
arguments: a shared object containing UserData as the first, and the goal message as the second.
This is an example function header signature:

function feedback = createFeedback(sharedObj,defaultFeedbackMsg)

You can use the data or resources in sharedObj.UserData as required to construct the feedback
message to send to the action client.
Example: @createFeedback
Data Types: function_handle

CreatePreemptedResultFcn — Callback function to construct result message if goal is
preempted
function handle

Callback function to construct the result message if the goal is preempted, specified as a function
handle. The result message is then sent to the action client. In the default framework, this function
always returns the default result message. When specifying the handle for a custom function, the
function must have two input arguments: a shared object containing UserData as the first, and the
goal message as the second. This is an example function header signature:

function result = createPreemptedResult(sharedObj,defaultResultMsg)

You can use the data or resources in sharedObj.UserData as required to construct the result
message reflecting the incomplete goal execution.
Example: @createPreemptedResult
Data Types: function_handle

CreateSuccessfulResultFcn — Callback function to construct result message if goal is
reached successfully
function handle

Callback function to construct the result message if the goal is reached successfully, specified as a
function handle. The result message is then sent to the action client. In the default framework, this
function always returns the default result message. When specifying the handle for a custom
function, the function must have two input arguments: a shared object containing UserData as the
first, and the goal message as the second. This is an example function header signature:

function result = createSuccessfulResult(sharedObj,defaultResultMsg)

You can use the data or resources in sharedObj.UserData as required to construct the result
message that reflects successful goal execution.

3 Methods

3-14

Example: @createSuccessfulResult
Data Types: function_handle

StepDelay — Number of seconds to pause each iteration
0.01 seconds (default) | nonnegative scalar

Number of seconds to pause each iteration, specified as a nonnegative scalar. Provide a nonzero
value to allow:

• Execution of other callbacks
• ROS action client to react to the received feedback

Example: 0.1

UserData — Data for use and modification during goal execution shared by all callbacks
[] (default) | scalar | array | structure

Data for use and modification during goal execution shared by all callbacks, specified as a scalar,
array, or a structure. This data is stored in an object passed to all the callbacks in the framework.
This enables all tasks to share the same data during goal execution, and any modifications made
during one task are reflected in subsequent tasks.
Example: eye(3)

Output Arguments
cb — Callback function
function handle

Callback for use as the goal execution callback in a ROS action server, returned as a function handle.
You can specify cb as the value of the ExecuteGoalFcn name-value argument when you create a
rosactionserver object.

Version History
Introduced in R2022a

See Also
rosactionserver | getFeedbackMessage | isPreemeptRequested | sendFeedback

Topics
“ROS Actions Overview”

 rosActionServerExecuteGoalFcn

3-15

waitfor
Package: ros

Pause code execution to achieve desired execution rate

Syntax
waitfor(rate)
numMisses = waitfor(rate)

Description
waitfor(rate) pauses execution of the ROS 2 loop execution object rate until the code reaches the
desired execution rate. The function accounts for the time spent executing code between waitfor
calls.

numMisses = waitfor(rate) returns the number of iterations missed while executing code
between calls.

Examples

Run Loop at Fixed Rate Using ros2rate

Create a ROS 2 node.

node = ros2node("/myNode");

Create a publisher to publish a standard integer message.

pub = ros2publisher(node,"/my_int","std_msgs/Int64");

Create a ros2rate object that runs at 2 Hz.

r = ros2rate(node,2);

Start loop that prints the current iteration and time elapsed. Use waitfor to pause the loop until the
next time interval. Reset r prior to the loop execution. Notice that each iteration executes at a 1-
second interval.

reset(r)
for i = 1:10
 time = r.TotalElapsedTime;
 fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
 waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.011678
Iteration: 2 - Time Elapsed: 0.515243
Iteration: 3 - Time Elapsed: 1.009290
Iteration: 4 - Time Elapsed: 1.505659
Iteration: 5 - Time Elapsed: 2.019408

3 Methods

3-16

Iteration: 6 - Time Elapsed: 2.517053
Iteration: 7 - Time Elapsed: 3.003471
Iteration: 8 - Time Elapsed: 3.512179
Iteration: 9 - Time Elapsed: 4.006785
Iteration: 10 - Time Elapsed: 4.503804

Input Arguments
rate — ros2rate object
handle

ros2rate object, specified as a handle. This object contains the information for the desired rate and
other information about the execution. See ros2rate for more information.

Output Arguments
numMisses — Number of missed task executions
scalar

Number of missed task executions, returned as a scalar. waitfor returns the number of desired time
steps missed based on the LastPeriod and DesiredRate properties of the ros2rate object rate.
For example, if the desired rate is 1 Hz and the last period was 3.2 seconds, numMisses is 3.

Version History
Introduced in R2022b

See Also
ros2rate

 waitfor

3-17

reset
Package: ros

Reset ros2rate object

Syntax
reset(rate)

Description
reset(rate) resets the state of the ros2rate object, including the elapsed time and all statistics
about previous periods. reset is useful if you want to run multiple successive loops at the same rate,
or if the object is created before the loop is executed.

Input Arguments
rate — ROS 2 loop execution object
ros2rate object

ROS 2 loop execution object, specified as ros2rate object. This object contains the information for
the DesiredRate and other info about the execution. See ros2rate for more information.

Version History
Introduced in R2022b

See Also
ros2rate | waitfor

3 Methods

3-18

statistics
Package: ros

Statistics of past execution periods

Syntax
stats = statistics(rate)

Description
stats = statistics(rate) returns statistics for the previous periods of code execution. stats is
a structure with these fields: Periods, NumPeriods, AveragePeriod, StandardDeviation, and
NumOverruns.

Here is a sample execution graphic using the default setting, 'slip', for the OverrunAction
property in the ros2rate object. See OverrunAction for more information on overrun code
execution.

The output of statistics is:

stats =

 Periods: [0.7 0.11 0.7 0.11]
 NumPeriods: 4
 AveragePeriod: 0.09
 StandardDeviation: 0.0231
 NumOverruns: 2

Input Arguments
rate — ROS 2 loop execution object
ros2rate object

ROS 2 loop execution object, specified as ros2rate object. This object contains the information for
the DesiredRate and other info about the execution. See ros2rate for more information.

 statistics

3-19

Output Arguments
stats — Time execution statistics
structure

Time execution statistics, returned as a structure. This structure contains the following fields:

• Period — All time periods (returned in seconds) used to calculate statistics as an indexed array.
stats.Period(end) is the most recent period.

• NumPeriods — Number of elements in Periods
• AveragePeriod — Average time in seconds
• StandardDeviation — Standard deviation of all periods in seconds, centered around the mean

stored in AveragePeriod
• NumOverruns — Number of periods with overrun

Version History
Introduced in R2022b

See Also
ros2rate | waitfor

3 Methods

3-20

select
Select subset of messages in rosbag

Syntax
bagreadersel = select(bagreader)
bagreadersel = select(bagreader,Name=Value)

Description
bagreadersel = select(bagreader) returns a rosbagreader object bagreadersel, that
contains all of the messages in the rosbagreader object bagreader.

This function creates a copy of the rosbagreader object or returns a new rosbagreader object
that contains the specified message selection.

bagreadersel = select(bagreader,Name=Value) specifies additional parameters using one or
more name-value arguments. For example Topic="/odom" selects a subset of the messages, filtered
by the topic /odom.

Examples

Create rosbag Selection Using rosbagreader Object

Load a rosbag log file and parse out specific messages based on the selected criteria.

Create a rosbagreader object of all the messages in the rosbag log file.

bagMsgs = rosbagreader("ros_multi_topics.bag")

bagMsgs =
 rosbagreader with properties:

 FilePath: 'B:\matlab\toolbox\robotics\robotexamples\ros\data\bags\ros_multi_topics.bag'
 StartTime: 201.3400
 EndTime: 321.3400
 NumMessages: 36963
 AvailableTopics: [4x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [36963x4 table]

Select a subset of the messages based on their timestamp and topic.

bagMsgs2 = select(bagMsgs,...
 Time=[bagMsgs.StartTime bagMsgs.StartTime + 1],...
 Topic='/odom')

bagMsgs2 =
 rosbagreader with properties:

 select

3-21

 FilePath: 'B:\matlab\toolbox\robotics\robotexamples\ros\data\bags\ros_multi_topics.bag'
 StartTime: 201.3400
 EndTime: 202.3200
 NumMessages: 99
 AvailableTopics: [1x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [99x4 table]

Retrieve the messages in the selection as a cell array.

msgs = readMessages(bagMsgs2)

msgs=99×1 cell array
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 {1x1 Odometry}
 ⋮

Return certain message properties as a time series.

ts = timeseries(bagMsgs2,...
 'Pose.Pose.Position.X', ...
 'Twist.Twist.Angular.Y')

 timeseries

 Timeseries contains duplicate times.

 Common Properties:
 Name: '/odom Properties'
 Time: [99x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [99x2 double]
 DataInfo: tsdata.datametadata

Input Arguments
bagreader — Index of messages in rosbag
rosbagreader object

Index of the messages in the rosbag, specified as a rosbagreader object.

3 Methods

3-22

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Topic="/odom" selects a subset of the messages, filtered by the topic /odom.

MessageType — ROS message type
string scalar | character vector | cell array of string scalars | cell array of character vectors

ROS message type, specified as a string scalar, character vector, cell array of string scalars, or cell
array of character vectors. Specify multiple message types by using a cell array.
Example: select(bagreader,MessageType={"nav_msgs/Odometry","rosgraph_msgs/
Clock"})

Data Types: char | string | cell

Time — Start and end times of rosbag selection
n-by-2 vector

Start and end times of the rosbag selection, specified as an n-by-2 vector.
Example: select(bagreader,Time=[bag.StartTime,bag.StartTime+1])
Data Types: double

Topic — ROS topic name
string scalar | character vector | cell array of string scalars | cell array of character vectors

ROS topic name, specified as a string scalar, character vector, cell array of string scalars, or cell array
of character vectors. Specify multiple topic names by using a cell array.
Example: select(bagreader,Topic={"/odom","/clock"})
Data Types: char | string | cell

Output Arguments
bagreadersel — Copy or subset of rosbag messages
rosbagreader object

Copy or subset of rosbag messages, returned as a rosbagreader object.

Version History
Introduced in R2021b

See Also
rosbagreader | readMessages | timeseries | canTransform | getTransform

 select

3-23

delete
Remove rosbag writer object from memory

Syntax
delete(bagWriter)

Description
delete(bagWriter) removes the rosbagwriter object from memory. The function closes the
opened rosbag file before deleting the object.

If multiple references to the rosbagwriter object exist in the workspace, deleting the
rosbagwriter object invalidates the remaining reference. Use the clear command to delete the
remaining references to the object from the workspace.

Note The rosbagwriter object locks the created bag file for use, it is necessary to delete and clear
the rosbagwriter object in order to use the bag file with a reader or perform other operations.

Examples

Write Log to rosbag File Using rosbagwriter Object

Retrieve all the information from the rosbag log file.

rosbag('info','path_record.bag')

Path: C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\24\tp41b4e721\ros-ex73035957\path_record.bag
Version: 2.0
Duration: 10.5s
Start: Jul 05 2021 08:09:52.86 (1625486992.86)
End: Jul 05 2021 08:10:03.40 (1625487003.40)
Size: 13.3 KB
Messages: 102
Types: geometry_msgs/Point [4a842b65f413084dc2b10fb484ea7f17]
Topics: /circle 51 msgs : geometry_msgs/Point
 /line 51 msgs : geometry_msgs/Point

Create a rosbagreader object of all the messages in the rosbag log file.

reader = rosbagreader('path_record.bag');

Select all the messages related to the topic '/circle'.

bagSelCircle = select(reader,'Topic','/circle');

Retrieve the list of timestamps from the topic.

timeStamps = bagSelCircle.MessageList.Time;

3 Methods

3-24

Retrieve the messages in the selection as a cell array.

messages = readMessages(bagSelCircle);

Create a rosbagwriter object to write the messages to a new rosbag file.

circleWriter = rosbagwriter('circular_path_record.bag');

Write all the messages related to the topic '/circle' to the new rosbag file.

write(circleWriter,'/circle',timeStamps,messages);

Remove the rosbagwriter object from memory and clear the associated object.

delete(circleWriter)
clear circleWriter

Retrieve all the information from the new rosbag log file.

rosbag('info','circular_path_record.bag')

Path: C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\24\tp41b4e721\ros-ex73035957\circular_path_record.bag
Version: 2.0
Duration: 10.4s
Start: Jul 05 2021 08:09:52.86 (1625486992.86)
End: Jul 05 2021 08:10:03.29 (1625487003.29)
Size: 8.8 KB
Messages: 51
Types: geometry_msgs/Point [4a842b65f413084dc2b10fb484ea7f17]
Topics: /circle 51 msgs : geometry_msgs/Point

Load the new rosbag log file.

readerCircle = rosbagreader('circular_path_record.bag');

Create a time series for the coordinates.

tsCircle = timeseries(readerCircle,'X','Y');

Plot the coordinates.

plot(tsCircle.Data(:,1),tsCircle.Data(:,2))
axis equal

 delete

3-25

Create rosbag File Using rosbagwriter Object

Create a rosbagwriter object and a rosbag file in the current working directory. Specify the
compression format of the message chunks and the size of each message chunk.

bagwriter = rosbagwriter("bagfile.bag", ...
 "Compression","lz4",...
 "ChunkSize",1500)

bagwriter =
 rosbagwriter with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\21\tp5760f945\ros-ex26181333\bagfile.bag'
 StartTime: 0
 EndTime: 0
 NumMessages: 0
 Compression: 'lz4'
 ChunkSize: 1500 Bytes
 FileSize: 4117 Bytes

Start node and connect to ROS master.

rosinit

3 Methods

3-26

Launching ROS Core...
...Done in 3.9209 seconds.
Initializing ROS master on http://172.30.131.134:52302.
Initializing global node /matlab_global_node_43980 with NodeURI http://bat6234win64:52834/ and MasterURI http://localhost:52302.

Write a single log to the rosbag file.

timeStamp = rostime("now");
rosMessage = rosmessage("nav_msgs/Odometry");
write(bagwriter,"/odom",timeStamp,rosMessage);
bagwriter

bagwriter =
 rosbagwriter with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\21\tp5760f945\ros-ex26181333\bagfile.bag'
 StartTime: 1.662e+09
 EndTime: 1.662e+09
 NumMessages: 1
 Compression: 'lz4'
 ChunkSize: 1500 Bytes
 FileSize: 4172 Bytes

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_43980 with NodeURI http://bat6234win64:52834/ and MasterURI http://localhost:52302.
Shutting down ROS master on http://172.30.131.134:52302.

Remove rosbag writer object from memory and clear the associated object.

delete(bagwriter)
clear bagwriter

Create a rosbagreader object and load all the messages in the rosbag log file. Verify the recently
written log.

bagreader = rosbagreader('bagfile.bag')

bagreader =
 rosbagreader with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\21\tp5760f945\ros-ex26181333\bagfile.bag'
 StartTime: 1.6620e+09
 EndTime: 1.6620e+09
 NumMessages: 1
 AvailableTopics: [1x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [1x4 table]

bagreader.AvailableTopics

ans=1×3 table
 NumMessages MessageType MessageDefinition
 ___________ _________________ _____________________________

 delete

3-27

 /odom 1 nav_msgs/Odometry {'std_msgs/Header Header...'}

Input Arguments
bagWriter — ROS log file writer
rosbagwriter object

ROS log file writer, specified as a rosbagwriter object.

Version History
Introduced in R2021b

See Also
Objects
rosbagwriter | rosbagreader

Functions
write

3 Methods

3-28

write
Write logs to rosbag log file

Syntax
write(bagwriter,topic,timestamp,message)

Description
write(bagwriter,topic,timestamp,message) writes a single or multiple logs to a rosbag log
file. A log contains a topic, its corresponding timestamp, and a ROS message.

Examples

Write Log to rosbag File Using rosbagwriter Object

Retrieve all the information from the rosbag log file.

rosbag('info','path_record.bag')

Path: C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\24\tp41b4e721\ros-ex73035957\path_record.bag
Version: 2.0
Duration: 10.5s
Start: Jul 05 2021 08:09:52.86 (1625486992.86)
End: Jul 05 2021 08:10:03.40 (1625487003.40)
Size: 13.3 KB
Messages: 102
Types: geometry_msgs/Point [4a842b65f413084dc2b10fb484ea7f17]
Topics: /circle 51 msgs : geometry_msgs/Point
 /line 51 msgs : geometry_msgs/Point

Create a rosbagreader object of all the messages in the rosbag log file.

reader = rosbagreader('path_record.bag');

Select all the messages related to the topic '/circle'.

bagSelCircle = select(reader,'Topic','/circle');

Retrieve the list of timestamps from the topic.

timeStamps = bagSelCircle.MessageList.Time;

Retrieve the messages in the selection as a cell array.

messages = readMessages(bagSelCircle);

Create a rosbagwriter object to write the messages to a new rosbag file.

circleWriter = rosbagwriter('circular_path_record.bag');

Write all the messages related to the topic '/circle' to the new rosbag file.

 write

3-29

write(circleWriter,'/circle',timeStamps,messages);

Remove the rosbagwriter object from memory and clear the associated object.

delete(circleWriter)
clear circleWriter

Retrieve all the information from the new rosbag log file.

rosbag('info','circular_path_record.bag')

Path: C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\24\tp41b4e721\ros-ex73035957\circular_path_record.bag
Version: 2.0
Duration: 10.4s
Start: Jul 05 2021 08:09:52.86 (1625486992.86)
End: Jul 05 2021 08:10:03.29 (1625487003.29)
Size: 8.8 KB
Messages: 51
Types: geometry_msgs/Point [4a842b65f413084dc2b10fb484ea7f17]
Topics: /circle 51 msgs : geometry_msgs/Point

Load the new rosbag log file.

readerCircle = rosbagreader('circular_path_record.bag');

Create a time series for the coordinates.

tsCircle = timeseries(readerCircle,'X','Y');

Plot the coordinates.

plot(tsCircle.Data(:,1),tsCircle.Data(:,2))
axis equal

3 Methods

3-30

Create rosbag File Using rosbagwriter Object

Create a rosbagwriter object and a rosbag file in the current working directory. Specify the
compression format of the message chunks and the size of each message chunk.

bagwriter = rosbagwriter("bagfile.bag", ...
 "Compression","lz4",...
 "ChunkSize",1500)

bagwriter =
 rosbagwriter with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\21\tp5760f945\ros-ex26181333\bagfile.bag'
 StartTime: 0
 EndTime: 0
 NumMessages: 0
 Compression: 'lz4'
 ChunkSize: 1500 Bytes
 FileSize: 4117 Bytes

Start node and connect to ROS master.

rosinit

 write

3-31

Launching ROS Core...
...Done in 3.9209 seconds.
Initializing ROS master on http://172.30.131.134:52302.
Initializing global node /matlab_global_node_43980 with NodeURI http://bat6234win64:52834/ and MasterURI http://localhost:52302.

Write a single log to the rosbag file.

timeStamp = rostime("now");
rosMessage = rosmessage("nav_msgs/Odometry");
write(bagwriter,"/odom",timeStamp,rosMessage);
bagwriter

bagwriter =
 rosbagwriter with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\21\tp5760f945\ros-ex26181333\bagfile.bag'
 StartTime: 1.662e+09
 EndTime: 1.662e+09
 NumMessages: 1
 Compression: 'lz4'
 ChunkSize: 1500 Bytes
 FileSize: 4172 Bytes

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_43980 with NodeURI http://bat6234win64:52834/ and MasterURI http://localhost:52302.
Shutting down ROS master on http://172.30.131.134:52302.

Remove rosbag writer object from memory and clear the associated object.

delete(bagwriter)
clear bagwriter

Create a rosbagreader object and load all the messages in the rosbag log file. Verify the recently
written log.

bagreader = rosbagreader('bagfile.bag')

bagreader =
 rosbagreader with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\21\tp5760f945\ros-ex26181333\bagfile.bag'
 StartTime: 1.6620e+09
 EndTime: 1.6620e+09
 NumMessages: 1
 AvailableTopics: [1x3 table]
 AvailableFrames: {0x1 cell}
 MessageList: [1x4 table]

bagreader.AvailableTopics

ans=1×3 table
 NumMessages MessageType MessageDefinition
 ___________ _________________ _____________________________

3 Methods

3-32

 /odom 1 nav_msgs/Odometry {'std_msgs/Header Header...'}

Input Arguments
bagwriter — ROS log file writer
rosbagwriter object

ROS log file writer, specified as a rosbagwriter object.

topic — ROS topic name
string scalar | character vector | cell array of string scalars | cell array of character vectors

ROS topic name, specified as a string scalar, character vector, cell array of string scalars, or cell array
of character vectors. Specify multiple topic names by using a cell array.
Example: "/odom"
Example: {"/odom","cmd_vel"}

timestamp — Timestamp of ROS message
Time object handle | numeric scalar | structure | cell array of Time object handles | cell array of
numeric scalars | cell array of structures

Timestamp of the ROS message, specified as a Time object handle, numeric scalar, structure, cell
array of Time object handles, cell array of numeric scalars, or cell array of structures. Specify
multiple timestamps by using a cell array. Create a Time object using rostime.
Example: 1625559291
Example: rostime("now")
Example: rostime("now","DataFormat","struct")
Example: {1625559291,1625559292}
Example: {rostime("now"),rostime("now")+1}

message — ROS message
Message object handle | structure | cell array of Message object handles | cell array of structures

ROS message, specified as a Message object handle, structure, cell array of Message object handles,
or cell array of structures. Specify multiple messages by using a cell array. Create a Message object
using rosmessage.
Example: rosmessage("nav_msgs/Odometry")
Example: rosmessage("nav_msgs/Odometry","DataFormat","struct")
Example: {rosmessage("nav_msgs/Odometry"),rosmessage("geometry_msgs/Twist")}

Version History
Introduced in R2021b

 write

3-33

See Also
Objects
rosbagwriter | rosbagreader

Functions
delete

3 Methods

3-34

delete
Remove ros2bagwriter object from memory

Syntax
delete(bagwriter)

Description
delete(bagwriter) removes the ros2bagwriter object from memory. The function closes the
opened ROS 2 bag file before deleting the object.

If multiple references to the ros2bagwriter object exist in the workspace, deleting the
ros2bagwriter object invalidates the remaining reference. Use the clear command to delete the
remaining references to the object from the workspace.

Note The ros2bagwriter object locks the created bag file. Delete and clear the ros2bagwriter
object to use the ROS 2 bag file.

Examples

Write Log Using ros2bagwriter Object by Reading Messages from ROS 2 Bag File

Extract the zip file that contains the ROS 2 bag log file and specify the full path to the log folder.

unzip('ros2_netwrk_bag.zip');
folderPath = fullfile(pwd,'ros2_netwrk_bag');

Get all the information from the ROS 2 bag log file.

bag2info = ros2("bag","info",folderPath);

Create a ros2bagreader object that contains all messages in the log file.

bag = ros2bagreader(folderPath);
bag.AvailableTopics

ans=4×3 table
 NumMessages MessageType MessageDefinition
 ___________ _____________________ __

 /clock 1.607e+05 rosgraph_msgs/Clock {'%...' }
 /cmd_vel 3 geometry_msgs/Twist {'...' }
 /odom 5275 nav_msgs/Odometry {'% The pose in this message should be specified in the coordinate frame given by header.frame_id...'}
 /scan 892 sensor_msgs/LaserScan {'%...' }

Select a subset of the messages, by applying filters to the topic and timestamp.

 delete

3-35

start = bag.StartTime;
odomBagSel = select(bag,"Time",[start start + 30e+09],"Topic","/odom")

odomBagSel =
 ros2bagreader with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\24\tp41b4e721\ros-ex95368813\ros2_netwrk_bag\ros2_netwrk_bag.db3'
 StartTime: 1601984883976047597
 EndTime: 1601984913775044431
 AvailableTopics: [1x3 table]
 MessageList: [801x3 table]
 NumMessages: 801

Get the messages in the selection.

odomMsgs = readMessages(odomBagSel);

Retrieve the list of timestamps from the topic. Convert the list to values with the double data type.

timestamps = odomBagSel.MessageList.Time;
timestamps_double = num2cell(double(timestamps)/1e+09);

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder.

bagwriter = ros2bagwriter("myRos2bag");

Write the messages related to the topic '/odom' to the ROS 2 bag file.

write(bagwriter,"/odom",timestamps_double,odomMsgs)

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Load the new ROS 2 bag log file.

bagOdom = ros2bagreader("myRos2bag");

Retrieve messages from the ROS 2 bag log file.

msgs = readMessages(bagOdom);

Plot the coordinates for the messages in the ROS 2 bag log file.

Remove the myRos2bag file and the ros2_netwrk_bag file from memory to run the example again.

plot(cellfun(@(msg) msg.pose.pose.position.x,msgs),cellfun(@(msg) msg.twist.twist.angular.z,msgs))

3 Methods

3-36

Create Single Log and Write to ROS 2 Bag File

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder.

bagwriter = ros2bagwriter("myRos2bag");

Write a single log to the ROS 2 bag file.

topic = "/odom";
message = ros2message("nav_msgs/Odometry");
timestamp = ros2time(1.6170e+09);
write(bagwriter,topic,timestamp,message)

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Create Multiple Logs and Write to ROS 2 Bag File

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder. Specify the cache size
for each message.

 delete

3-37

bagwriter = ros2bagwriter("bag_files/my_bag_file",CacheSize=1500);

Write multiple logs to the ROS 2 bag file.

message1 = ros2message("nav_msgs/Odometry");
message2 = ros2message("geometry_msgs/Twist");
message3 = ros2message("sensor_msgs/Image");
write(bagwriter, ...
 ["/odom","cmd_vel","/camera/rgb/image_raw"], ...
 {ros2time(1.6160e+09),ros2time(1.6170e+09),ros2time(1.6180e+09)}, ...
 {message1,message2,message3})

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Create Multiple Logs for Same Topic and Write to ROS 2 Bag File

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder.

bagwriter = ros2bagwriter("myBag");

Write multiple logs for the same topic to the ROS 2 bag file.

pointMsg1 = ros2message("geometry_msgs/Point");
pointMsg1.x = 1;
pointMsg2 = ros2message("geometry_msgs/Point");
pointMsg2.x = 2;
pointMsg3 = ros2message("geometry_msgs/Point");
pointMsg3.x = 3;
write(bagwriter, ...
 "/point", ...
 {1.6190e+09, 1.6200e+09,1.6210e+09}, ...
 {pointMsg1,pointMsg2,pointMsg3})

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Input Arguments
bagwriter — ROS 2 log file writer
ros2bagwriter object

ROS 2 log file writer, specified as a ros2bagwriter object.

Version History
Introduced in R2022b

3 Methods

3-38

See Also
Objects
ros2bagwriter

Functions
write

Topics
“Write Log to rosbag File Using rosbagwriter Object” on page 3-24

 delete

3-39

write
Write logs to ROS 2 bag log file

Syntax
write(bagwriter,topic,timestamp,message)

Description
write(bagwriter,topic,timestamp,message) writes logs to the ROS 2 bag log file. A log
contains a topic, its corresponding timestamp, and a ROS message.

Examples

Write Log Using ros2bagwriter Object by Reading Messages from ROS 2 Bag File

Extract the zip file that contains the ROS 2 bag log file and specify the full path to the log folder.

unzip('ros2_netwrk_bag.zip');
folderPath = fullfile(pwd,'ros2_netwrk_bag');

Get all the information from the ROS 2 bag log file.

bag2info = ros2("bag","info",folderPath);

Create a ros2bagreader object that contains all messages in the log file.

bag = ros2bagreader(folderPath);
bag.AvailableTopics

ans=4×3 table
 NumMessages MessageType MessageDefinition
 ___________ _____________________ __

 /clock 1.607e+05 rosgraph_msgs/Clock {'%...' }
 /cmd_vel 3 geometry_msgs/Twist {'...' }
 /odom 5275 nav_msgs/Odometry {'% The pose in this message should be specified in the coordinate frame given by header.frame_id...'}
 /scan 892 sensor_msgs/LaserScan {'%...' }

Select a subset of the messages, by applying filters to the topic and timestamp.

start = bag.StartTime;
odomBagSel = select(bag,"Time",[start start + 30e+09],"Topic","/odom")

odomBagSel =
 ros2bagreader with properties:

 FilePath: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\24\tp41b4e721\ros-ex95368813\ros2_netwrk_bag\ros2_netwrk_bag.db3'
 StartTime: 1601984883976047597
 EndTime: 1601984913775044431
 AvailableTopics: [1x3 table]

3 Methods

3-40

 MessageList: [801x3 table]
 NumMessages: 801

Get the messages in the selection.

odomMsgs = readMessages(odomBagSel);

Retrieve the list of timestamps from the topic. Convert the list to values with the double data type.

timestamps = odomBagSel.MessageList.Time;
timestamps_double = num2cell(double(timestamps)/1e+09);

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder.

bagwriter = ros2bagwriter("myRos2bag");

Write the messages related to the topic '/odom' to the ROS 2 bag file.

write(bagwriter,"/odom",timestamps_double,odomMsgs)

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Load the new ROS 2 bag log file.

bagOdom = ros2bagreader("myRos2bag");

Retrieve messages from the ROS 2 bag log file.

msgs = readMessages(bagOdom);

Plot the coordinates for the messages in the ROS 2 bag log file.

Remove the myRos2bag file and the ros2_netwrk_bag file from memory to run the example again.

plot(cellfun(@(msg) msg.pose.pose.position.x,msgs),cellfun(@(msg) msg.twist.twist.angular.z,msgs))

 write

3-41

Create Single Log and Write to ROS 2 Bag File

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder.

bagwriter = ros2bagwriter("myRos2bag");

Write a single log to the ROS 2 bag file.

topic = "/odom";
message = ros2message("nav_msgs/Odometry");
timestamp = ros2time(1.6170e+09);
write(bagwriter,topic,timestamp,message)

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Create Multiple Logs and Write to ROS 2 Bag File

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder. Specify the cache size
for each message.

3 Methods

3-42

bagwriter = ros2bagwriter("bag_files/my_bag_file",CacheSize=1500);

Write multiple logs to the ROS 2 bag file.

message1 = ros2message("nav_msgs/Odometry");
message2 = ros2message("geometry_msgs/Twist");
message3 = ros2message("sensor_msgs/Image");
write(bagwriter, ...
 ["/odom","cmd_vel","/camera/rgb/image_raw"], ...
 {ros2time(1.6160e+09),ros2time(1.6170e+09),ros2time(1.6180e+09)}, ...
 {message1,message2,message3})

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Create Multiple Logs for Same Topic and Write to ROS 2 Bag File

Create a ros2bagwriter object and a ROS 2 bag file in the specified folder.

bagwriter = ros2bagwriter("myBag");

Write multiple logs for the same topic to the ROS 2 bag file.

pointMsg1 = ros2message("geometry_msgs/Point");
pointMsg1.x = 1;
pointMsg2 = ros2message("geometry_msgs/Point");
pointMsg2.x = 2;
pointMsg3 = ros2message("geometry_msgs/Point");
pointMsg3.x = 3;
write(bagwriter, ...
 "/point", ...
 {1.6190e+09, 1.6200e+09,1.6210e+09}, ...
 {pointMsg1,pointMsg2,pointMsg3})

Close the bag file, remove the ros2bagwriter object from memory, and clear the associated object.

delete(bagwriter)
clear bagwriter

Input Arguments
bagwriter — ROS 2 log file writer
ros2bagwriter object

ROS 2 log file writer, specified as a ros2bagwriter object.

topic — ROS 2 topic names
string scalar | character vector | cell array of string scalars | cell array of character vectors

ROS 2 topic names, specified as a string scalar, character vector, cell array of string scalars, or cell
array of character vectors. Specify multiple topic names by using a cell array.

 write

3-43

Example: "/odom"
Example: {"/odom","cmd_vel"}

timestamp — Timestamps of ROS 2 messages
Time object | numeric scalar | structure | cell array of Time objects | cell array of nonnegative
numeric scalars | cell array of structures

Timestamps of the ROS 2 messages, specified as Time objects, numeric scalar, structure, cell array of
Time objects, cell array of nonnegative numeric scalars, or cell array of structures. Specify multiple
timestamps by using a cell array. Create a Time object using ros2time.
Example: 1625559291
Example: ros2time("now")
Example: ros2time("now",DataFormat="struct")
Example: {1625559291,1625559292}
Example: {ros2time("now"),ros2time("now")+1}

message — ROS 2 messages
Message object | structure | cell array of Message objects | cell array of structures

ROS 2 messages, specified as a Message object, structure, cell array of Message objects, or cell
array of structures. Specify multiple messages by using a cell array. Create a Message object using
ros2message.
Example: ros2message("nav_msgs/Odometry")
Example: ros2message("nav_msgs/Odometry",DataFormat="struct")
Example: {ros2message("nav_msgs/Odometry"),ros2message("geometry_msgs/Twist")}

Version History
Introduced in R2022b

See Also
Objects
ros2bagwriter

Functions
delete

Topics
“Write Log to rosbag File Using rosbagwriter Object” on page 3-29

3 Methods

3-44

reset
Reset Rate object

Syntax
reset(rate)

Description
reset(rate) resets the state of the Rate object, including the elapsed time and all statistics about
previous periods. reset is useful if you want to run multiple successive loops at the same rate, or if
the object is created before the loop is executed.

Input Arguments
rate — rateControl object
handle

rateControl object, specified as a handle. This object contains the information for the desired rate
and other information about the execution. See rateControl for more information.

Version History
Introduced in R2019b

See Also
rosrate | rateControl | waitfor

Topics
“Execute Code at a Fixed-Rate” (Robotics System Toolbox)

 reset

3-45

statistics
Statistics of past execution periods

Syntax
stats = statistics(rate)

Description
stats = statistics(rate) returns statistics of previous periods of code execution. stats is a
struct with these fields: Periods, NumPeriods, AveragePeriod, StandardDeviation, and
NumOverruns.

Here is a sample execution graphic using the default setting, 'slip', for the OverrunAction
property in the Rate object. See OverrunAction for more information on overrun code execution.

The output of statistics is:

stats =

 Periods: [0.7 0.11 0.7 0.11]
 NumPeriods: 4
 AveragePeriod: 0.09
 StandardDeviation: 0.0231
 NumOverruns: 2

Input Arguments
rate — Rate object
handle

Rate object, specified as an object handle. This object contains the information for the DesiredRate
and other info about the execution. See rateControl for more information.

Output Arguments
stats — Time execution statistics
structure

3 Methods

3-46

Time execution statistics, returned as a structure. This structure contains the following fields:

• Period — All time periods (returned in seconds) used to calculate statistics as an indexed array.
stats.Period(end) is the most recent period.

• NumPeriods — Number of elements in Periods
• AveragePeriod — Average time in seconds
• StandardDeviation — Standard deviation of all periods in seconds, centered around the mean

stored in AveragePeriod
• NumOverruns — Number of periods with overrun

Version History
Introduced in R2019b

See Also
rosrate | waitfor | rateControl

Topics
“Execute Code at a Fixed-Rate” (Robotics System Toolbox)

 statistics

3-47

waitfor
Package: ros

Pause code execution to achieve desired execution rate

Syntax
waitfor(rate)
numMisses = waitfor(rate)

Description
waitfor(rate) pauses execution until the code reaches the desired execution rate. The function
accounts for the time that is spent executing code between waitfor calls.

numMisses = waitfor(rate) returns the number of iterations missed while executing code
between calls.

Input Arguments
rate — Rate object
handle

Rate object, specified as a handle. This object contains the information for the desired rate and other
information about the execution. See rateControl for more information.

Output Arguments
numMisses — Number of missed task executions
scalar

Number of missed task executions, returned as a scalar. waitfor returns the number of times the
task was missed in the Rate object based on the LastPeriod time. For example, if the desired rate
is 1 Hz and the last period was 3.2 seconds, numMisses returns 3.

Version History
Introduced in R2019b

See Also
rosrate | rateControl | waitfor

Topics
“Execute Code at a Fixed-Rate” (Robotics System Toolbox)

3 Methods

3-48

readMessages
Read messages from ros2bagreader object

Syntax
msgs = readMessages(bag)
msgs = readMessages(bag,rows)

Description
msgs = readMessages(bag) returns data from all of the messages in the ros2bagreader object
bag. The messages are returned as a cell array of structures.

msgs = readMessages(bag,rows) returns data from the messages in the rows specified by rows.
The range of the rows is [1 bag.NumMessages].

Examples

Read Messages from ROS 2 Bag Log File

Extract the zip file that contains the ROS 2 bag log file and specify the full path to the log folder.

unzip('ros2_netwrk_bag.zip');
folderPath = fullfile(pwd,'ros2_netwrk_bag');

Create a ros2bagreader object that contains all messages in the log file.

bag = ros2bagreader(folderPath);

Get information on the contents of the ros2bagreader object.

baginfo = ros2("bag","info",folderPath)

baginfo = struct with fields:
 Path: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\14\tp4aa60852\ros-ex96596996\ros2_netwrk_bag\ros2_netwrk_bag.db3'
 Version: '1'
 StorageId: 'sqlite3'
 Duration: 207.9020
 Start: [1x1 struct]
 End: [1x1 struct]
 Size: 16839538
 Messages: 166867
 Types: [4x1 struct]
 Topics: [4x1 struct]

Get all the messages in the ros2bagreader object.

msgs = readMessages(bag);

Select a subset of the messages, filtered by topic.

 readMessages

3-49

bagSel = select(bag,"Topic","/odom");

Get the messages in the selection.

msgsFiltered = readMessages(bagSel);

Input Arguments
bag — Messages in ros2bagreader object
ros2bagreader object

Messages in the ros2bagreader object, specified as a ros2bagreader object.

rows — Rows of ros2bagreader object
n-element vector

Rows of the ros2bagreader object, specified as an n-element vector. n is the number of rows to
retrieve messages from. Each entry in the vector corresponds to a numbered message in the bag. The
range of the rows is [1 bag.NumMessages].

Output Arguments
msgs — ROS 2 message data
cell array of structures

ROS 2 message data, returned as a cell array of structures.

Version History
Introduced in R2021a

See Also
Objects
ros2bagreader

Functions
select

3 Methods

3-50

select
Select subset of messages in ros2bagreader

Syntax
bagsel = select(bag)
bagsel = select(bag,Name,Value)

Description
bagsel = select(bag) returns a ros2bagreader object, bagsel, that contains all of the
messages in the ros2bagreader object, bag.

This function creates a copy of the ros2bagreader object or returns a new ros2bagreader object
that contains the specified message selection.

bagsel = select(bag,Name,Value) provides additional options specified by one or more name-
value pair arguments. For example, "Topic","/scan" selects a subset of the messages, filtered by
the topic /scan.

Examples

Read Messages from ROS 2 Bag Log File

Extract the zip file that contains the ROS 2 bag log file and specify the full path to the log folder.

unzip('ros2_netwrk_bag.zip');
folderPath = fullfile(pwd,'ros2_netwrk_bag');

Create a ros2bagreader object that contains all messages in the log file.

bag = ros2bagreader(folderPath);

Get information on the contents of the ros2bagreader object.

baginfo = ros2("bag","info",folderPath)

baginfo = struct with fields:
 Path: 'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\14\tp4aa60852\ros-ex96596996\ros2_netwrk_bag\ros2_netwrk_bag.db3'
 Version: '1'
 StorageId: 'sqlite3'
 Duration: 207.9020
 Start: [1x1 struct]
 End: [1x1 struct]
 Size: 16839538
 Messages: 166867
 Types: [4x1 struct]
 Topics: [4x1 struct]

Get all the messages in the ros2bagreader object.

 select

3-51

msgs = readMessages(bag);

Select a subset of the messages, filtered by topic.

bagSel = select(bag,"Topic","/odom");

Get the messages in the selection.

msgsFiltered = readMessages(bagSel);

Input Arguments
bag — Messages in ros2bagreader object
ros2bagreader object

Messages in the ros2bagreader object, specified as a ros2bagreader object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: select(bag,"Topic","/scan") selects a subset of the messages, filtered by the topic /
scan.

MessageType — ROS 2 message type
string scalar | character vector | cell array of string scalars | cell array of character vectors

ROS 2 message type, specified as a string scalar, character vector, cell array of string scalars, or cell
array of character vectors. Multiple message types can be specified with a cell array.
Example: select(bag,"MessageType",{"sensor_msgs/CameraInfo","sensor_msgs/
LaserScan"})

Data Types: char | string | cell

Time — Start and end times of ROS 2 bag selection
n-by-2 vector

Start and end times of the ROS 2 bag selection, specified as an n-by-2 vector.
Example: select(bag,"Time",
[bag.MessageList(1,1).Time,bag.MessageList(2,1).Time])

Data Types: uint64

Topic — ROS 2 topic name
string scalar | character vector | cell array of string scalars | cell array of character vectors

ROS 2 topic name, specified as a string scalar, character vector, cell array of string scalars, or cell
array of character vectors. Multiple topic names can be specified with a cell array.
Example: select(bag,"Topic",{"/scan","/clock"})
Data Types: char | string | cell

3 Methods

3-52

Output Arguments
bagsel — Copy or subset of ROS 2 bag messages
ros2bagreader object

Copy or subset of ROS 2 bag messages, returned as a ros2bagreader object.

Version History
Introduced in R2021a

See Also
Objects
ros2bagreader

Functions
readMessages

 select

3-53

get
Get value of parameter in associated ROS 2 node

Syntax
paramValue = get(paramObj,paramName)
[paramValue,status] = get(paramObj,paramName)

Description
paramValue = get(paramObj,paramName) returns paramValue, that contains the value of the
specified parameter paramName in the ROS 2 node associated with the parameter object, paramObj.
If it fails to return the parameter value, this syntax displays an error.

[paramValue,status] = get(paramObj,paramName) returns a status indicating whether the
function was able to successfully return the parameter value. If it fails to return the parameter value,
this syntax returns the paramValue as an empty double, and the status as false without
displaying an error.

Examples

Interact with Parameters of ROS 2 Node

Create a ROS 2 node with parameters.

nodeParams.my_double = 2.0;
nodeParams.my_namespace.my_int = int64(1);
nodeParams.my_double_array = [1.1 2.2 3.3];
nodeParams.my_string = "Keyparams";
node1 = ros2node("/node1",Parameters=nodeParams);

Create a ros2param object to interact with the parameters of the ROS 2 node, /node1.

paramObj = ros2param("/node1");

Use the set function to change the value of the parameter my_string.

set(paramObj,"my_string","Newparams");

Use the get function to obtain the new value of my_string.

stringVal = get(paramObj,"my_string")

stringVal =
'Newparams'

Use the has function to check if the parameter my_char exists in the ROS 2 node, /node1.

flag = has(paramObj,"my_char")

3 Methods

3-54

flag = logical
 0

Use the search function to search for names of all the parameters that contain the string "my_d".
Obtain the values of the matching parameters.

[pNames,pVals] = search(paramObj,"my_d")

pNames = 2x1 cell
 {'my_double' }
 {'my_double_array'}

pVals=2×1 cell array
 {[2]}
 {[1.1000 2.2000 3.3000]}

Use the list function to list the names of all parameters in the ROS 2 node.

pList = list(paramObj)

pList = 5x1 cell
 {'my_double' }
 {'my_double_array' }
 {'my_namespace.my_int'}
 {'my_string' }
 {'use_sim_time' }

Input Arguments
paramObj — ROS 2 parameter object
handle (default)

ROS 2 parameter object, specified as a ros2param object handle.

paramName — Name of parameter
string scalar | character vector

Name of the parameter, specified as a string scalar or a character vector.

Output Arguments
paramValue — Value of parameter
scalar | array

Value of the parameter, returned as a scalar or an array.
Data Types: int64 | logical | char | string | double | cell

status — Status of parameter return
logical scalar

Status of the parameter return, returned as a logical scalar.

 get

3-55

Version History
Introduced in R2022b

See Also
ros2param | set

3 Methods

3-56

has
Check if parameter exists in ROS 2 node

Syntax
exists = has(paramObj,paramName)

Description
exists = has(paramObj,paramName) checks if the parameter paramName exists in the ROS 2
node associated with the parameter object paramObj. This function returns exists as true only if
the parameter exists.

Examples

Interact with Parameters of ROS 2 Node

Create a ROS 2 node with parameters.

nodeParams.my_double = 2.0;
nodeParams.my_namespace.my_int = int64(1);
nodeParams.my_double_array = [1.1 2.2 3.3];
nodeParams.my_string = "Keyparams";
node1 = ros2node("/node1",Parameters=nodeParams);

Create a ros2param object to interact with the parameters of the ROS 2 node, /node1.

paramObj = ros2param("/node1");

Use the set function to change the value of the parameter my_string.

set(paramObj,"my_string","Newparams");

Use the get function to obtain the new value of my_string.

stringVal = get(paramObj,"my_string")

stringVal =
'Newparams'

Use the has function to check if the parameter my_char exists in the ROS 2 node, /node1.

flag = has(paramObj,"my_char")

flag = logical
 0

Use the search function to search for names of all the parameters that contain the string "my_d".
Obtain the values of the matching parameters.

[pNames,pVals] = search(paramObj,"my_d")

 has

3-57

pNames = 2x1 cell
 {'my_double' }
 {'my_double_array'}

pVals=2×1 cell array
 {[2]}
 {[1.1000 2.2000 3.3000]}

Use the list function to list the names of all parameters in the ROS 2 node.

pList = list(paramObj)

pList = 5x1 cell
 {'my_double' }
 {'my_double_array' }
 {'my_namespace.my_int'}
 {'my_string' }
 {'use_sim_time' }

Input Arguments
paramObj — ROS 2 parameter object
handle (default)

ROS 2 parameter object, specified as a ros2param object handle.

paramName — Name of the parameter
string scalar | character vector

Name of the parameter, specified as a string scalar or a character vector.

Output Arguments
exists — Flag indicating whether parameter exists
logical scalar

Flag indicating whether the parameter exists, returned as a logical scalar.

Version History
Introduced in R2022b

See Also
ros2param

3 Methods

3-58

list
List all parameters in associated ROS 2 node

Syntax
paramList = list(paramObj)

Description
paramList = list(paramObj) returns paramList which contains the list of all the parameters in
the ROS 2 node associated with the parameter object, paramObj

Examples

Interact with Parameters of ROS 2 Node

Create a ROS 2 node with parameters.

nodeParams.my_double = 2.0;
nodeParams.my_namespace.my_int = int64(1);
nodeParams.my_double_array = [1.1 2.2 3.3];
nodeParams.my_string = "Keyparams";
node1 = ros2node("/node1",Parameters=nodeParams);

Create a ros2param object to interact with the parameters of the ROS 2 node, /node1.

paramObj = ros2param("/node1");

Use the set function to change the value of the parameter my_string.

set(paramObj,"my_string","Newparams");

Use the get function to obtain the new value of my_string.

stringVal = get(paramObj,"my_string")

stringVal =
'Newparams'

Use the has function to check if the parameter my_char exists in the ROS 2 node, /node1.

flag = has(paramObj,"my_char")

flag = logical
 0

Use the search function to search for names of all the parameters that contain the string "my_d".
Obtain the values of the matching parameters.

[pNames,pVals] = search(paramObj,"my_d")

 list

3-59

pNames = 2x1 cell
 {'my_double' }
 {'my_double_array'}

pVals=2×1 cell array
 {[2]}
 {[1.1000 2.2000 3.3000]}

Use the list function to list the names of all parameters in the ROS 2 node.

pList = list(paramObj)

pList = 5x1 cell
 {'my_double' }
 {'my_double_array' }
 {'my_namespace.my_int'}
 {'my_string' }
 {'use_sim_time' }

Input Arguments
paramObj — ROS 2 parameter object
handle (default)

ROS 2 parameter object, specified as a ros2param object handle.

Output Arguments
paramList — List of all parameter names in associated ROS 2 node
cell array

List of all parameter names in the associated ROS 2 node, returned as a cell array.

Version History
Introduced in R2022b

See Also
ros2param

3 Methods

3-60

search
Search for parameter names in ROS 2 node

Syntax
paramNames = search(paramObj,searchStr)
[paramNames,paramValues] = search(paramObj,searchStr)

Description
paramNames = search(paramObj,searchStr) searches for parameter names in the ROS 2 node
associated with the parameter object paramObj, which contain the string searchStr. The function
returns the matching parameter names in pNames.

[paramNames,paramValues] = search(paramObj,searchStr) also returns the corresponding
values pValues of the matching parameters in pNames.

Examples

Interact with Parameters of ROS 2 Node

Create a ROS 2 node with parameters.

nodeParams.my_double = 2.0;
nodeParams.my_namespace.my_int = int64(1);
nodeParams.my_double_array = [1.1 2.2 3.3];
nodeParams.my_string = "Keyparams";
node1 = ros2node("/node1",Parameters=nodeParams);

Create a ros2param object to interact with the parameters of the ROS 2 node, /node1.

paramObj = ros2param("/node1");

Use the set function to change the value of the parameter my_string.

set(paramObj,"my_string","Newparams");

Use the get function to obtain the new value of my_string.

stringVal = get(paramObj,"my_string")

stringVal =
'Newparams'

Use the has function to check if the parameter my_char exists in the ROS 2 node, /node1.

flag = has(paramObj,"my_char")

flag = logical
 0

 search

3-61

Use the search function to search for names of all the parameters that contain the string "my_d".
Obtain the values of the matching parameters.

[pNames,pVals] = search(paramObj,"my_d")

pNames = 2x1 cell
 {'my_double' }
 {'my_double_array'}

pVals=2×1 cell array
 {[2]}
 {[1.1000 2.2000 3.3000]}

Use the list function to list the names of all parameters in the ROS 2 node.

pList = list(paramObj)

pList = 5x1 cell
 {'my_double' }
 {'my_double_array' }
 {'my_namespace.my_int'}
 {'my_string' }
 {'use_sim_time' }

Input Arguments
paramObj — ROS 2 parameter object
handle (default)

ROS 2 parameter object, specified as a ros2param object handle.

searchStr — ROS 2 parameter search string
string scalar | character vector

ROS 2 parameter search string specified as a string scalar or character vector. The search function
returns all parameters that contain this search string.

Output Arguments
paramNames — Matching parameter names
cell array of character vectors

Matching parameter names, returned as a cell array of character vectors.

paramValues — Values of the matching parameters
cell array

Values of the matching parameters, returned as a cell array.
Data Types: int64 | logical | char | string | double | cell

3 Methods

3-62

Version History
Introduced in R2022b

See Also
ros2param

 search

3-63

set
Set value of parameter in associated ROS 2 node

Syntax
set(paramObj,paramName,paramValue)

Description
set(paramObj,paramName,paramValue) sets the value paramValue for the parameter
paramName in the ROS 2 node associated with the parameter object paramObj. If paramName does
not exist in the ROS 2 node, this syntax throws an error.

Examples

Interact with Parameters of ROS 2 Node

Create a ROS 2 node with parameters.

nodeParams.my_double = 2.0;
nodeParams.my_namespace.my_int = int64(1);
nodeParams.my_double_array = [1.1 2.2 3.3];
nodeParams.my_string = "Keyparams";
node1 = ros2node("/node1",Parameters=nodeParams);

Create a ros2param object to interact with the parameters of the ROS 2 node, /node1.

paramObj = ros2param("/node1");

Use the set function to change the value of the parameter my_string.

set(paramObj,"my_string","Newparams");

Use the get function to obtain the new value of my_string.

stringVal = get(paramObj,"my_string")

stringVal =
'Newparams'

Use the has function to check if the parameter my_char exists in the ROS 2 node, /node1.

flag = has(paramObj,"my_char")

flag = logical
 0

Use the search function to search for names of all the parameters that contain the string "my_d".
Obtain the values of the matching parameters.

[pNames,pVals] = search(paramObj,"my_d")

3 Methods

3-64

pNames = 2x1 cell
 {'my_double' }
 {'my_double_array'}

pVals=2×1 cell array
 {[2]}
 {[1.1000 2.2000 3.3000]}

Use the list function to list the names of all parameters in the ROS 2 node.

pList = list(paramObj)

pList = 5x1 cell
 {'my_double' }
 {'my_double_array' }
 {'my_namespace.my_int'}
 {'my_string' }
 {'use_sim_time' }

Input Arguments
paramObj — ROS 2 parameter object
handle (default)

ROS 2 parameter object, specified as a ros2param object handle.

paramName — Name of parameter
string scalar | character vector

Name of the parameter, specified as a string scalar or a character vector.

paramValue — Value of parameter
scalar | array

Value of the parameter, specified as a scalar or an array.
Data Types: int64 | logical | char | string | double | cell

Version History
Introduced in R2022b

See Also
ros2param | get

 set

3-65

send
Publish ROS 2 message to topic

Syntax
send(pub,msg)

Description
send(pub,msg) publishes a message to the topic specified by the publisher, pub. This message can
be received by all subscribers in the ROS 2 network that are subscribed to the topic specified by pub.

Examples

Exchange Data with ROS 2 Publishers and Subscribers

The primary mechanism for ROS 2 nodes to exchange data is to send and receive messages.
Messages are transmitted on a topic and each topic has a unique name in the ROS 2 network. If a
node wants to share information, it must use a publisher to send data to a topic. A node that wants to
receive that information must use a subscriber for that same topic. Besides its unique name, each
topic also has a message type, which determines the type of messages that are allowed to be
transmitted in the specific topic.

This publisher-subscriber communication has the following characteristics:

• Topics are used for many-to-many communication. Multiple publishers can send messages to the
same topic and multiple subscribers can receive them.

• Publisher and subscribers are decoupled through topics and can be created and destroyed in any
order. A message can be published to a topic even if there are no active subscribers.

3 Methods

3-66

This example shows how to publish and subscribe to topics in a ROS 2 network. It also shows how to:

• Wait until a new message is received, or
• Use callbacks to process new messages in the background

Prerequisites: “Get Started with ROS 2”, “Connect to a ROS 2 Network”

Subscribe and Wait for Messages

Create a sample ROS 2 network with several publishers and subscribers.

exampleHelperROS2CreateSampleNetwork

Use ros2 topic list to see which topics are available.

ros2 topic list

/parameter_events
/pose
/rosout
/scan

Assume you want to subscribe to the /scan topic. Use ros2subscriber to subscribe to the /scan
topic. Specify the name of the node with the subscriber. If the topic already exists in the ROS 2
network, ros2subscriber detects its message type automatically, so you do not need to specify it.

detectNode = ros2node("/detection");
pause(5)
laserSub = ros2subscriber(detectNode,"/scan");
pause(5)

Use receive to wait for a new message. Specify a timeout of 10 seconds. The output scanData
contains the received message data. status indicates whether a message was received successfully
and statustext provides additional information about the status.

 send

3-67

[scanData,status,statustext] = receive(laserSub,10);

You can now remove the subscriber laserSub and the node associated to it.

clear laserSub
clear detectNode

Subscribe Using Callback Functions

Instead of using receive to get data, you can specify a function to be called when a new message is
received. This allows other MATLAB code to execute while the subscriber is waiting for new
messages. Callbacks are essential if you want to use multiple subscribers.

Subscribe to the /pose topic, using the callback function exampleHelperROS2PoseCallback,
which takes a received message as the input. One way of sharing data between your main workspace
and the callback function is to use global variables. Define two global variables pos and orient.

controlNode = ros2node("/base_station");
pause(5)
poseSub = ros2subscriber(controlNode,"/pose",@exampleHelperROS2PoseCallback);
global pos
global orient

The global variables pos and orient are assigned in the exampleHelperROS2PoseCallback
function when new message data is received on the /pose topic.

function exampleHelperROS2PoseCallback(message)
 % Declare global variables to store position and orientation
 global pos
 global orient

 % Extract position and orientation from the ROS message and assign the
 % data to the global variables.
 pos = [message.linear.x message.linear.y message.linear.z];
 orient = [message.angular.x message.angular.y message.angular.z];
end

Wait a moment for the network to publish another /pose message. Display the updated values.

pause(3)
disp(pos)

 0.0434 -0.0392 -0.0318

disp(orient)

 -0.0401 -0.0010 -0.0307

If you type in pos and orient a few times in the command line you can see that the values are
continuously updated.

Stop the pose subscriber by clearing the subscriber variable

clear poseSub
clear controlNode

Note: There are other ways to extract information from callback functions besides using globals. For
example, you can pass a handle object as additional argument to the callback function. See the

3 Methods

3-68

“Create Callbacks for Graphics Objects” documentation for more information about defining callback
functions.

Publish Messages

Create a publisher that sends ROS 2 string messages to the /chatter topic.

chatterPub = ros2publisher(node_1,"/chatter","std_msgs/String");

Create and populate a ROS 2 message to send to the /chatter topic.

chatterMsg = ros2message(chatterPub);
chatterMsg.data = 'hello world';

Use ros2 topic list to verify that the /chatter topic is available in the ROS 2 network.

ros2 topic list

/chatter
/parameter_events
/pose
/rosout
/scan

Define a subscriber for the /chatter topic. exampleHelperROS2ChatterCallback is called when
a new message is received, and displays the string content in the message.

chatterSub = ros2subscriber(node_2,"/chatter",@exampleHelperROS2ChatterCallback)

chatterSub =
 ros2subscriber with properties:

 TopicName: '/chatter'
 LatestMessage: []
 MessageType: 'std_msgs/String'
 NewMessageFcn: @exampleHelperROS2ChatterCallback
 History: 'keeplast'
 Depth: 10
 Reliability: 'reliable'
 Durability: 'volatile'

Publish a message to the /chatter topic. Observe that the string is displayed by the subscriber
callback.

send(chatterPub,chatterMsg)
pause(3)

ans =
'hello world'

The exampleHelperROS2ChatterCallback function was called when the subscriber received the
string message.

Disconnect From ROS 2 Network

Remove the sample nodes, publishers and subscribers from the ROS 2 network. Also clear the global
variables pos and orient

 send

3-69

clear global pos orient
clear

Next Steps

• “Work with Basic ROS 2 Messages”
• “ROS 2 Custom Message Support”

Input Arguments
pub — ros2publisher object
ros2publisher

ros2publisher object, specified as a handle, that publishes the specified topic.

msg — ROS 2 message
Message structure

ROS 2 message, specified as a structure, with compatible fields for that message type.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ros2publisher

Topics
“Exchange Data with ROS 2 Publishers and Subscribers”
“Manage Quality of Service Policies in ROS 2”

3 Methods

3-70

getParameter
Get value of parameter declared in ROS 2 node

Syntax
paramValue = getParameter(nodeObj,paramName)
[paramValue,status] = getParameter(nodeObj,paramName)
[paramValue,status] = getParameter(nodeObj,paramName,Datatype=dtype)

Description
paramValue = getParameter(nodeObj,paramName) returns paramValue, that contains the
value of the specified parameter paramName associated with the ROS 2 node nodeObj. If it fails to
return the parameter value, this syntax displays an error.

[paramValue,status] = getParameter(nodeObj,paramName) returns a status indicating
whether the function was able to successfully return the parameter value. If it fails to return the
parameter value, this syntax returns the paramValue as an empty double, and the status as
false without displaying an error.

[paramValue,status] = getParameter(nodeObj,paramName,Datatype=dtype) specifies
the expected return datatype of paramValue in the generated code using the name-value argument
Datatype. You must specify this syntax for code generation. This syntax supports the returned
datatype to be int64, logical, string, char or double.

Examples

Get and Set Parameters for ROS 2 Nodes

Create a structure that contains all the parameters for the ROS 2 node.

nodeParams.my_double = 2.0;
nodeParams.my_namespace.my_int = int64(1);
nodeParams.my_double_array = [1.1 2.2 3.3];
nodeParams.my_string = "Keyparams";

Create a ROS 2 node and specify nodeParams as the parameters.

node1 = ros2node("/node1",Parameters=nodeParams);

Set the parameter my_double to a new value.

setParameter(node1,"my_double",5.2);

Obtain the new value of the parameter my_double.

doubleValue = getParameter(node1,"my_double")

doubleValue = 5.2000

 getParameter

3-71

Input Arguments
nodeObj — ROS 2 node on network
handle (default)

A object on the network, specified as a ros2node object handle.

paramName — Name of the parameter
string scalar | character vector

Name of the parameter, specified as a string scalar or a character vector.

Output Arguments
paramValue — Value of the parameter
scalar | array

Value of the parameter, returned as a scalar or an array.
Data Types: int64 | logical | char | string | double | cell

status — Status of parameter return
logical scalar

Status of the parameter return, returned as a logical scalar.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You must use the syntax that specifies the Datatype name-value argument.

See Also
setParameter | ros2node | ros2param

3 Methods

3-72

setParameter
Set value of parameter declared in ROS 2 node

Syntax
setParameter(nodeObj,paramName,paramValue)

Description
setParameter(nodeObj,paramName,paramValue) sets the value of the parameter paramName
associated with the ROS 2 node object nodeObj to the value, paramValue. If paramName does not
exist in the ROS 2 node, this syntax throws an error.

Examples

Get and Set Parameters for ROS 2 Nodes

Create a structure that contains all the parameters for the ROS 2 node.

nodeParams.my_double = 2.0;
nodeParams.my_namespace.my_int = int64(1);
nodeParams.my_double_array = [1.1 2.2 3.3];
nodeParams.my_string = "Keyparams";

Create a ROS 2 node and specify nodeParams as the parameters.

node1 = ros2node("/node1",Parameters=nodeParams);

Set the parameter my_double to a new value.

setParameter(node1,"my_double",5.2);

Obtain the new value of the parameter my_double.

doubleValue = getParameter(node1,"my_double")

doubleValue = 5.2000

Input Arguments
nodeObj — ROS 2 node on network
handle (default)

A object on the network, specified as a ros2node object handle.

paramName — Name of the parameter
string scalar | character vector

Name of the parameter, specified as a string scalar or a character vector.

 setParameter

3-73

paramValue — Value of the parameter
scalar | array

Value of the parameter, specified as a scalar or an array.
Data Types: int64 | logical | char | string | double | cell

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
getParameter | ros2node | ros2param

3 Methods

3-74

delete
Remove reference to ROS 2 node

Syntax
delete(node)

Description
delete(node) removes the reference in node to the ROS 2 node on the network. If no further
references to the node exist, such as would be in publishers and subscribers, the node is shut down.

Input Arguments
node — ROS 2 node on network
handle (default)

A ros2node object on the network.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ros2node

 delete

3-75

receive
Wait for new message

Syntax
msg = receive(sub)
msg = receive(sub, timeout)
[msg,status,statustext] = receive(___)

Description
msg = receive(sub) blocks code execution until a new message is received by the subscriber,
sub, for the specific topic.

msg = receive(sub, timeout) specifies a timeout period, in seconds. If the subscriber does not
receive a topic message and the timeout period elapses, the function displays an error message.

[msg,status,statustext] = receive(___) returns a status indicating whether a message
has been received successfully, and a statustext that captures additional information about the
status, using any of the arguments from the previous syntaxes. If an error condition occurs, such as
no message received within the specified timeout, the status will be false, and this function will
not display an error.

Examples

Exchange Data with ROS 2 Publishers and Subscribers

The primary mechanism for ROS 2 nodes to exchange data is to send and receive messages.
Messages are transmitted on a topic and each topic has a unique name in the ROS 2 network. If a
node wants to share information, it must use a publisher to send data to a topic. A node that wants to
receive that information must use a subscriber for that same topic. Besides its unique name, each
topic also has a message type, which determines the type of messages that are allowed to be
transmitted in the specific topic.

This publisher-subscriber communication has the following characteristics:

• Topics are used for many-to-many communication. Multiple publishers can send messages to the
same topic and multiple subscribers can receive them.

• Publisher and subscribers are decoupled through topics and can be created and destroyed in any
order. A message can be published to a topic even if there are no active subscribers.

3 Methods

3-76

This example shows how to publish and subscribe to topics in a ROS 2 network. It also shows how to:

• Wait until a new message is received, or
• Use callbacks to process new messages in the background

Prerequisites: “Get Started with ROS 2”, “Connect to a ROS 2 Network”

Subscribe and Wait for Messages

Create a sample ROS 2 network with several publishers and subscribers.

exampleHelperROS2CreateSampleNetwork

Use ros2 topic list to see which topics are available.

ros2 topic list

/parameter_events
/pose
/rosout
/scan

Assume you want to subscribe to the /scan topic. Use ros2subscriber to subscribe to the /scan
topic. Specify the name of the node with the subscriber. If the topic already exists in the ROS 2
network, ros2subscriber detects its message type automatically, so you do not need to specify it.

detectNode = ros2node("/detection");
pause(5)
laserSub = ros2subscriber(detectNode,"/scan");
pause(5)

Use receive to wait for a new message. Specify a timeout of 10 seconds. The output scanData
contains the received message data. status indicates whether a message was received successfully
and statustext provides additional information about the status.

 receive

3-77

[scanData,status,statustext] = receive(laserSub,10);

You can now remove the subscriber laserSub and the node associated to it.

clear laserSub
clear detectNode

Subscribe Using Callback Functions

Instead of using receive to get data, you can specify a function to be called when a new message is
received. This allows other MATLAB code to execute while the subscriber is waiting for new
messages. Callbacks are essential if you want to use multiple subscribers.

Subscribe to the /pose topic, using the callback function exampleHelperROS2PoseCallback,
which takes a received message as the input. One way of sharing data between your main workspace
and the callback function is to use global variables. Define two global variables pos and orient.

controlNode = ros2node("/base_station");
pause(5)
poseSub = ros2subscriber(controlNode,"/pose",@exampleHelperROS2PoseCallback);
global pos
global orient

The global variables pos and orient are assigned in the exampleHelperROS2PoseCallback
function when new message data is received on the /pose topic.

function exampleHelperROS2PoseCallback(message)
 % Declare global variables to store position and orientation
 global pos
 global orient

 % Extract position and orientation from the ROS message and assign the
 % data to the global variables.
 pos = [message.linear.x message.linear.y message.linear.z];
 orient = [message.angular.x message.angular.y message.angular.z];
end

Wait a moment for the network to publish another /pose message. Display the updated values.

pause(3)
disp(pos)

 0.0434 -0.0392 -0.0318

disp(orient)

 -0.0401 -0.0010 -0.0307

If you type in pos and orient a few times in the command line you can see that the values are
continuously updated.

Stop the pose subscriber by clearing the subscriber variable

clear poseSub
clear controlNode

Note: There are other ways to extract information from callback functions besides using globals. For
example, you can pass a handle object as additional argument to the callback function. See the

3 Methods

3-78

“Create Callbacks for Graphics Objects” documentation for more information about defining callback
functions.

Publish Messages

Create a publisher that sends ROS 2 string messages to the /chatter topic.

chatterPub = ros2publisher(node_1,"/chatter","std_msgs/String");

Create and populate a ROS 2 message to send to the /chatter topic.

chatterMsg = ros2message(chatterPub);
chatterMsg.data = 'hello world';

Use ros2 topic list to verify that the /chatter topic is available in the ROS 2 network.

ros2 topic list

/chatter
/parameter_events
/pose
/rosout
/scan

Define a subscriber for the /chatter topic. exampleHelperROS2ChatterCallback is called when
a new message is received, and displays the string content in the message.

chatterSub = ros2subscriber(node_2,"/chatter",@exampleHelperROS2ChatterCallback)

chatterSub =
 ros2subscriber with properties:

 TopicName: '/chatter'
 LatestMessage: []
 MessageType: 'std_msgs/String'
 NewMessageFcn: @exampleHelperROS2ChatterCallback
 History: 'keeplast'
 Depth: 10
 Reliability: 'reliable'
 Durability: 'volatile'

Publish a message to the /chatter topic. Observe that the string is displayed by the subscriber
callback.

send(chatterPub,chatterMsg)
pause(3)

ans =
'hello world'

The exampleHelperROS2ChatterCallback function was called when the subscriber received the
string message.

Disconnect From ROS 2 Network

Remove the sample nodes, publishers and subscribers from the ROS 2 network. Also clear the global
variables pos and orient

 receive

3-79

clear global pos orient
clear

Next Steps

• “Work with Basic ROS 2 Messages”
• “ROS 2 Custom Message Support”

Input Arguments
sub — ros2subscriber object
handle (default)

ros2subscriber object, specified as a handle, that subscribes to a specific topic.

timeout — Timeout period
positive scalar

The amount of time before the receiver function will error out if a message is not received.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
msg — ROS 2 message
Message object handle

ROS 2 message, specified as a Message object handle.

status — Status of the message reception
logical scalar

Status of the message reception, returned as a logical scalar. If no message is received, status will
be false.

Note Use the status output argument when you use receive in the entry-point function for code
generation. This will avoid runtime errors and outputs the status instead, which can be reacted to in
the calling code.

statustext — Status text associated with the message reception status
character vector

Status text associated with the message reception, returned as one of the following:

• 'success' — The message was successfully received.
• 'timeout' — The message was not received within the specified timeout.
• 'unknown' — The message was not received due to unknown errors.

Tips
Choosing between receive and using a callback:

3 Methods

3-80

• Use receive when your program should wait until the next message is received on the topic and
no other processing should happen in the meantime.

• If you want your program to keep running and be notified whenever a new message arrives,
consider using a callback instead of receive.

• If you want your program to periodically use the most recent data received by the subscriber,
consider accessing the LatestMessage property instead of using receive or a callback.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To monitor the message reception status and react in the calling code, use the status output
argument. This will avoid runtime errors when no message is received.

See Also
ros2subscriber

 receive

3-81

hasFrame
Determine if another Velodyne point cloud is available in the ROS messages

Syntax
isAvailable = hasFrame(veloReader)

Description
isAvailable = hasFrame(veloReader) determines if another point cloud is available in the
Velodyne ROS messages.

Examples

Work with Velodyne ROS Messages

Velodyne ROS messages store data in a format that requires some interpretation before it can be
used for further processing. MATLAB® can help you by formatting Velodyne ROS messages for easy
use. In this example, you can explore how VelodyneScan messages from a Velodyne LiDAR are
handled.

Prerequisites: “Work with Basic ROS Messages”

Load Sample Messages

Load sample Velodyne messages. These messages are populated with data gathered from Velodyne
LiDAR sensor.

load("lidarData_ConstructionRoad.mat")

VelodyneScan Messages

VelodyneScan messages are ROS messages that contain Velodyne LIDAR scan packets. You can see
the standard ROS format for a VelodyneScan message by creating an empty message of the
appropriate type. Use messages in structure format for better performance.

emptyveloScan = rosmessage("velodyne_msgs/VelodyneScan","DataFormat","struct")

emptyveloScan = struct with fields:
 MessageType: 'velodyne_msgs/VelodyneScan'
 Header: [1×1 struct]
 Packets: [0×1 struct]

Since you created an empty message, emptyveloScan does not contain any meaningful data. For
convenience, the loaded lidarData_ConstructionRoad.mat file contains a set of VelodyneScan
messages that are fully populated and stored in the msgs variable. Each element in the msgs cell
array is a VelodyneScan ROS message struct. The primary data in each VelodyneScan message is
in the Packets property, it contains multiple VelodynePacket messages. You can see the standard
ROS format for a VelodynePacket message by creating an empty message of the appropriate type.

3 Methods

3-82

emptyveloPkt = rosmessage("velodyne_msgs/VelodynePacket","DataFormat","struct")

emptyveloPkt = struct with fields:
 MessageType: 'velodyne_msgs/VelodynePacket'
 Stamp: [1×1 struct]
 Data: [1206×1 uint8]

Create Velodyne ROS Message Reader

The velodyneROSMessageReader object reads point cloud data from VelodyneScan ROS
messages based on their specified model type. Note that providing an incorrect device model may
result in improperly calibrated point clouds. This example uses messages from the "HDL32E" model.

veloReader = velodyneROSMessageReader(msgs,"HDL32E")

veloReader =
 velodyneROSMessageReader with properties:

 VelodyneMessages: {28×1 cell}
 DeviceModel: 'HDL32E'
 CalibrationFile: 'M:\jobarchive\Bdoc21b\2021_06_16_h16m50s15_job1697727_pass\matlab\toolbox\shared\pointclouds\utilities\velodyneFileReaderConfiguration\HDL32E.xml'
 NumberOfFrames: 55
 Duration: 2.7477 sec
 StartTime: 1145.2 sec
 EndTime: 1147.9 sec
 Timestamps: [1145.2 sec 1145.2 sec 1145.3 sec 1145.3 sec 1145.4 sec 1145.4 sec 1145.5 sec 1145.5 sec 1145.6 sec 1145.6 sec 1145.7 sec 1145.7 sec 1145.8 sec 1145.8 sec 1145.9 sec 1145.9 sec …]
 CurrentTime: 1145.2 sec

Extract Point Clouds

You can extract point clouds from the raw packets message with the help of this
velodyneROSMessageReader object. By providing a specific frame number or timestamp, one point
cloud can be extracted from velodyneROSMessageReader object using the readFrame object
function. If you call readFrame without a frame number or timestamp, it extracts the next point
cloud in the sequence based on the CurrentTime property.

Create a duration scalar that represents one second after the first point cloud reading.

timeDuration = veloReader.StartTime + seconds(1);

Read the first point cloud recorded at or after the given time duration.

ptCloudObj = readFrame(veloReader,timeDuration);

Access Location data in the point cloud.

ptCloudLoc = ptCloudObj.Location;

Reset the CurrentTime property of veloReader to the default value

reset(veloReader)

Display All Point Clouds

You can also loop through all point clouds in the input Velodyne ROS messages.

Define x-, y-, and z-axes limits for pcplayer in meters. Label the axes.

 hasFrame

3-83

xlimits = [-60 60];
ylimits = [-60 60];
zlimits = [-20 20];

Create the point cloud player.

player = pcplayer(xlimits,ylimits,zlimits);

Label the axes.

xlabel(player.Axes,"X (m)");
ylabel(player.Axes,"Y (m)");
zlabel(player.Axes,"Z (m)");

The first point cloud of interest is captured at 0.3 second into the input messages. Set the
CurrentTime property to that time to begin reading point clouds from there.

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);

Display the point cloud stream for 2 seconds. To check if a new frame is available and continue past 2
seconds, remove the last while condition. Iterate through the file by calling readFrame to read in
point clouds. Display them using the point cloud player.

while(hasFrame(veloReader) && isOpen(player) && (veloReader.CurrentTime < veloReader.StartTime + seconds(2)))
 ptCloudObj = readFrame(veloReader);
 view(player,ptCloudObj.Location,ptCloudObj.Intensity);
 pause(0.1);
end

3 Methods

3-84

Input Arguments
veloReader — Velodyne ROS message reader
velodyneROSMessageReader object

Velodyne ROS message reader, specified as a velodyneROSMessageReader object.

Output Arguments
isAvailable — Indicator of frame availability
true or 1 | false or 0

Indicator of frame availability, returned as a logical 1 (true) when a later frame is available or a
logical 0 (false) when a later frame is not available.

Version History
Introduced in R2020b

 hasFrame

3-85

See Also
velodyneROSMessageReader | readFrame | reset

3 Methods

3-86

readFrame
Read point cloud frame from ROS message

Syntax
ptCloud = readFrame(veloReader)
ptCloud = readFrame(veloReader,frameNumber)
ptCloud = readFrame(veloReader,frameTime)

Description
ptCloud = readFrame(veloReader) reads the next point cloud frame from the Velodyne ROS
messages and returns a pointCloud object. The next point cloud frame is the first point cloud
available at or after the value of the CurrentTime property of the Velodyne ROS message reader
object veloReader.

ptCloud = readFrame(veloReader,frameNumber) reads the point cloud with the specified
frame number from the Velodyne ROS messages.

ptCloud = readFrame(veloReader,frameTime) reads the first point cloud available at or after
the specified timestamp frameTime.

Examples

Work with Velodyne ROS Messages

Velodyne ROS messages store data in a format that requires some interpretation before it can be
used for further processing. MATLAB® can help you by formatting Velodyne ROS messages for easy
use. In this example, you can explore how VelodyneScan messages from a Velodyne LiDAR are
handled.

Prerequisites: “Work with Basic ROS Messages”

Load Sample Messages

Load sample Velodyne messages. These messages are populated with data gathered from Velodyne
LiDAR sensor.

load("lidarData_ConstructionRoad.mat")

VelodyneScan Messages

VelodyneScan messages are ROS messages that contain Velodyne LIDAR scan packets. You can see
the standard ROS format for a VelodyneScan message by creating an empty message of the
appropriate type. Use messages in structure format for better performance.

emptyveloScan = rosmessage("velodyne_msgs/VelodyneScan","DataFormat","struct")

emptyveloScan = struct with fields:
 MessageType: 'velodyne_msgs/VelodyneScan'

 readFrame

3-87

 Header: [1×1 struct]
 Packets: [0×1 struct]

Since you created an empty message, emptyveloScan does not contain any meaningful data. For
convenience, the loaded lidarData_ConstructionRoad.mat file contains a set of VelodyneScan
messages that are fully populated and stored in the msgs variable. Each element in the msgs cell
array is a VelodyneScan ROS message struct. The primary data in each VelodyneScan message is
in the Packets property, it contains multiple VelodynePacket messages. You can see the standard
ROS format for a VelodynePacket message by creating an empty message of the appropriate type.

emptyveloPkt = rosmessage("velodyne_msgs/VelodynePacket","DataFormat","struct")

emptyveloPkt = struct with fields:
 MessageType: 'velodyne_msgs/VelodynePacket'
 Stamp: [1×1 struct]
 Data: [1206×1 uint8]

Create Velodyne ROS Message Reader

The velodyneROSMessageReader object reads point cloud data from VelodyneScan ROS
messages based on their specified model type. Note that providing an incorrect device model may
result in improperly calibrated point clouds. This example uses messages from the "HDL32E" model.

veloReader = velodyneROSMessageReader(msgs,"HDL32E")

veloReader =
 velodyneROSMessageReader with properties:

 VelodyneMessages: {28×1 cell}
 DeviceModel: 'HDL32E'
 CalibrationFile: 'M:\jobarchive\Bdoc21b\2021_06_16_h16m50s15_job1697727_pass\matlab\toolbox\shared\pointclouds\utilities\velodyneFileReaderConfiguration\HDL32E.xml'
 NumberOfFrames: 55
 Duration: 2.7477 sec
 StartTime: 1145.2 sec
 EndTime: 1147.9 sec
 Timestamps: [1145.2 sec 1145.2 sec 1145.3 sec 1145.3 sec 1145.4 sec 1145.4 sec 1145.5 sec 1145.5 sec 1145.6 sec 1145.6 sec 1145.7 sec 1145.7 sec 1145.8 sec 1145.8 sec 1145.9 sec 1145.9 sec …]
 CurrentTime: 1145.2 sec

Extract Point Clouds

You can extract point clouds from the raw packets message with the help of this
velodyneROSMessageReader object. By providing a specific frame number or timestamp, one point
cloud can be extracted from velodyneROSMessageReader object using the readFrame object
function. If you call readFrame without a frame number or timestamp, it extracts the next point
cloud in the sequence based on the CurrentTime property.

Create a duration scalar that represents one second after the first point cloud reading.

timeDuration = veloReader.StartTime + seconds(1);

Read the first point cloud recorded at or after the given time duration.

ptCloudObj = readFrame(veloReader,timeDuration);

Access Location data in the point cloud.

3 Methods

3-88

ptCloudLoc = ptCloudObj.Location;

Reset the CurrentTime property of veloReader to the default value

reset(veloReader)

Display All Point Clouds

You can also loop through all point clouds in the input Velodyne ROS messages.

Define x-, y-, and z-axes limits for pcplayer in meters. Label the axes.

xlimits = [-60 60];
ylimits = [-60 60];
zlimits = [-20 20];

Create the point cloud player.

player = pcplayer(xlimits,ylimits,zlimits);

Label the axes.

xlabel(player.Axes,"X (m)");
ylabel(player.Axes,"Y (m)");
zlabel(player.Axes,"Z (m)");

The first point cloud of interest is captured at 0.3 second into the input messages. Set the
CurrentTime property to that time to begin reading point clouds from there.

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);

Display the point cloud stream for 2 seconds. To check if a new frame is available and continue past 2
seconds, remove the last while condition. Iterate through the file by calling readFrame to read in
point clouds. Display them using the point cloud player.

while(hasFrame(veloReader) && isOpen(player) && (veloReader.CurrentTime < veloReader.StartTime + seconds(2)))
 ptCloudObj = readFrame(veloReader);
 view(player,ptCloudObj.Location,ptCloudObj.Intensity);
 pause(0.1);
end

 readFrame

3-89

Input Arguments
veloReader — Velodyne ROS message reader
velodyneROSMesasgeReader object

Velodyne ROS message reader, specified as a velodyneROSMessageReader object.

frameNumber — Frame number of desired point cloud
positive integer

Frame number of the desired point cloud, specified as a positive integer. Frame numbers are
sequential in the velodyneROSMessageReader object.

frameTime — Frame time of desired point cloud
duration scalar

Frame time of the desired point cloud, specified as a duration scalar in seconds. The function
return the first frame available at or after the specified timestamp.

3 Methods

3-90

Output Arguments
ptCloud — Point Cloud
pointCloud object

Point cloud, returned as pointCloud object.

Version History
Introduced in R2020b

See Also
velodyneROSMessageReader | pointCloud | hasFrame | reset

 readFrame

3-91

reset
Reset CurrentTime property of velodyneROSMessageReader object to default value

Syntax
reset(veloReader)

Description
reset(veloReader) resets the CurrentTime property of the specified
velodyneROSMessageReader object to the default value. The default value is the value of the
StartTime property of the velodyneROSMessageReader object.

Examples

Work with Velodyne ROS Messages

Velodyne ROS messages store data in a format that requires some interpretation before it can be
used for further processing. MATLAB® can help you by formatting Velodyne ROS messages for easy
use. In this example, you can explore how VelodyneScan messages from a Velodyne LiDAR are
handled.

Prerequisites: “Work with Basic ROS Messages”

Load Sample Messages

Load sample Velodyne messages. These messages are populated with data gathered from Velodyne
LiDAR sensor.

load("lidarData_ConstructionRoad.mat")

VelodyneScan Messages

VelodyneScan messages are ROS messages that contain Velodyne LIDAR scan packets. You can see
the standard ROS format for a VelodyneScan message by creating an empty message of the
appropriate type. Use messages in structure format for better performance.

emptyveloScan = rosmessage("velodyne_msgs/VelodyneScan","DataFormat","struct")

emptyveloScan = struct with fields:
 MessageType: 'velodyne_msgs/VelodyneScan'
 Header: [1×1 struct]
 Packets: [0×1 struct]

Since you created an empty message, emptyveloScan does not contain any meaningful data. For
convenience, the loaded lidarData_ConstructionRoad.mat file contains a set of VelodyneScan
messages that are fully populated and stored in the msgs variable. Each element in the msgs cell
array is a VelodyneScan ROS message struct. The primary data in each VelodyneScan message is
in the Packets property, it contains multiple VelodynePacket messages. You can see the standard
ROS format for a VelodynePacket message by creating an empty message of the appropriate type.

3 Methods

3-92

emptyveloPkt = rosmessage("velodyne_msgs/VelodynePacket","DataFormat","struct")

emptyveloPkt = struct with fields:
 MessageType: 'velodyne_msgs/VelodynePacket'
 Stamp: [1×1 struct]
 Data: [1206×1 uint8]

Create Velodyne ROS Message Reader

The velodyneROSMessageReader object reads point cloud data from VelodyneScan ROS
messages based on their specified model type. Note that providing an incorrect device model may
result in improperly calibrated point clouds. This example uses messages from the "HDL32E" model.

veloReader = velodyneROSMessageReader(msgs,"HDL32E")

veloReader =
 velodyneROSMessageReader with properties:

 VelodyneMessages: {28×1 cell}
 DeviceModel: 'HDL32E'
 CalibrationFile: 'M:\jobarchive\Bdoc21b\2021_06_16_h16m50s15_job1697727_pass\matlab\toolbox\shared\pointclouds\utilities\velodyneFileReaderConfiguration\HDL32E.xml'
 NumberOfFrames: 55
 Duration: 2.7477 sec
 StartTime: 1145.2 sec
 EndTime: 1147.9 sec
 Timestamps: [1145.2 sec 1145.2 sec 1145.3 sec 1145.3 sec 1145.4 sec 1145.4 sec 1145.5 sec 1145.5 sec 1145.6 sec 1145.6 sec 1145.7 sec 1145.7 sec 1145.8 sec 1145.8 sec 1145.9 sec 1145.9 sec …]
 CurrentTime: 1145.2 sec

Extract Point Clouds

You can extract point clouds from the raw packets message with the help of this
velodyneROSMessageReader object. By providing a specific frame number or timestamp, one point
cloud can be extracted from velodyneROSMessageReader object using the readFrame object
function. If you call readFrame without a frame number or timestamp, it extracts the next point
cloud in the sequence based on the CurrentTime property.

Create a duration scalar that represents one second after the first point cloud reading.

timeDuration = veloReader.StartTime + seconds(1);

Read the first point cloud recorded at or after the given time duration.

ptCloudObj = readFrame(veloReader,timeDuration);

Access Location data in the point cloud.

ptCloudLoc = ptCloudObj.Location;

Reset the CurrentTime property of veloReader to the default value

reset(veloReader)

Display All Point Clouds

You can also loop through all point clouds in the input Velodyne ROS messages.

Define x-, y-, and z-axes limits for pcplayer in meters. Label the axes.

 reset

3-93

xlimits = [-60 60];
ylimits = [-60 60];
zlimits = [-20 20];

Create the point cloud player.

player = pcplayer(xlimits,ylimits,zlimits);

Label the axes.

xlabel(player.Axes,"X (m)");
ylabel(player.Axes,"Y (m)");
zlabel(player.Axes,"Z (m)");

The first point cloud of interest is captured at 0.3 second into the input messages. Set the
CurrentTime property to that time to begin reading point clouds from there.

veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);

Display the point cloud stream for 2 seconds. To check if a new frame is available and continue past 2
seconds, remove the last while condition. Iterate through the file by calling readFrame to read in
point clouds. Display them using the point cloud player.

while(hasFrame(veloReader) && isOpen(player) && (veloReader.CurrentTime < veloReader.StartTime + seconds(2)))
 ptCloudObj = readFrame(veloReader);
 view(player,ptCloudObj.Location,ptCloudObj.Intensity);
 pause(0.1);
end

3 Methods

3-94

Input Arguments
veloReader — Velodyne ROS message reader
velodyneROSMessageReader object

Velodyne ROS message reader, specified as a velodyneROSMessageReader object.

Version History
Introduced in R2020b

See Also
velodyneROSMessageReader | readFrame | hasFrame

 reset

3-95

Blocks

4

Blank Message
Create blank message using specified message type
Library: ROS Toolbox / ROS

Description
The Blank Message block creates a Simulink nonvirtual bus corresponding to the selected ROS
message type. The block creates ROS message buses that work with Publish, Subscribe, or Call
Service blocks. On each sample hit, the block outputs a blank or “zero” signal for the designated
message type. All elements of the bus are initialized to 0. The lengths of the variable-length arrays
are also initialized to 0.

Limitations
Before R2016b, models using ROS message types with certain reserved property names could not
generate code. In 2016b, this limitation has been removed. The property names are now appended
with an underscore (e.g. Vector3Stamped_). If you use models created with a pre-R2016b release,
update the ROS message types using the new names with an underscore. Redefine custom maximum
sizes for variable length arrays.

The affected message types are:

• 'geometry_msgs/Vector3Stamped'
• 'jsk_pcl_ros/TransformScreenpointResponse'
• 'pddl_msgs/PDDLAction'
• 'rocon_interaction_msgs/Interaction'
• 'capabilities/GetRemappingsResponse'
• 'dynamic_reconfigure/Group'

Input/Output Ports
Output

Msg — Blank ROS message
nonvirtual bus

Blank ROS message, returned as a nonvirtual bus. To specify the type of ROS message, use the Type
parameter. All elements of the bus are initialized to 0. The lengths of the variable-length arrays are
also initialized to 0.
Data Types: bus

4 Blocks

4-2

Parameters
Class — Class of ROS message
Message (default) | Service Request | Service Response

Class of ROS message, specified as Message, Service Request, or Service Response. For basic
publishing and subscribing, use the Message class.

Type — ROS message type
'geometry_msgs/Point' (default) | character vector | dialog box selection

ROS message type, specified as a character vector or a dialog box selection. Use Select to select
from a list of supported ROS messages. The list of messages given depends on the Class of message
you select.

Sample time — Interval between outputs
Inf (default) | numeric scalar

Interval between outputs, specified as a numeric scalar. The default value indicates that the block
output never changes. Using this value speeds simulation and code generation by eliminating the
need to recompute the block output. Otherwise, the block outputs a new blank message at each
interval of Sample time.

For more information, see “Specify Sample Time” (Simulink).

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Publish | Subscribe | Call Service

Topics
“Get Started with ROS in Simulink”
“Work with ROS Messages in Simulink”
“Connect to a ROS-enabled Robot from Simulink®”
“Composite Interface Guidelines” (Simulink)

 Blank Message

4-3

Blank Message
Create blank ROS 2 message using specified message type
Library: ROS Toolbox / ROS 2

Description
The Blank Message block creates a Simulink nonvirtual bus corresponding to the selected ROS
message type. The block creates ROS message buses that work with Publish, Subscribe and Call
Service blocks.

Ports
Output

Msg — Blank ROS 2 message
non-virtual bus

Blank ROS 2 message, returned as a non-virtual bus. To specify the type of ROS message, use the
Type parameter. All elements of the bus are initialized to 0. The lengths of the variable-length arrays
are also initialized to 0.
Data Types: bus

Parameters
Class — Class of ROS 2 message
Message (default) | Service Request | Service Response

Class of ROS 2 message, specified as Message, Service Request, or Service Response. For
basic publishing and subscribing, use the Message class. To create a service request message for
Call Service input, use the Service Request class.

Message type — ROS 2 message type
'geometry_msgs/Point' (default) | character vector | dialog box selection

ROS 2 message type, specified as a character vector or a dialog box selection. Use Select to select
from a list of supported ROS messages. The list of messages given depends on the Class of message
you select.

Sample time — Interval between outputs
Inf (default) | positive numeric scalar

Interval between outputs, specified as a numeric scalar. The default value indicates that the block
output never changes. Using this value speeds simulation and code generation by eliminating the
need to recompute the block output. Otherwise, the block outputs a new blank message at each
interval of Sample time.

4 Blocks

4-4

For more information, see “Specify Sample Time” (Simulink).

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Publish | Subscribe | Call Service

 Blank Message

4-5

Call Service
Call service in ROS network
Library: ROS Toolbox / ROS

Description
The Call Service block takes a ROS service request message, sends it to the ROS service server, and
waits for a response. Connect to a ROS network using rosinit. A ROS server should be set up
somewhere on the network before using this block. Check the available services on a ROS network
using rosservice. Use rossvcserver to set up a service server in MATLAB.

Specify the name for your ROS service and the service type in the block mask. If connected to a ROS
network, you can select from a list of available services. You can create a blank service request or
response message to populate with data using the Blank Message block.

Ports
Input

Req — Request message
nonvirtual bus

Request message, specified as a nonvirtual bus. The request message type corresponds to your
service type. To generate an empty request message bus to populate with data, use the Blank
Message block.
Data Types: bus

Output

Resp — Response message
nonvirtual bus

Response message, returned as a nonvirtual bus. The response is based on the input Req message.
The response message type corresponds to your service type. To generate an empty response
message bus to populate with data, use the Blank Message block.
Data Types: bus

ErrorCode — Error conditions for service call
integer

Error conditions for service call, specified as an integer. Each integer corresponds to a different error
condition for the service connection or the status of the service call. If an error condition occurs,
Resp outputs the last response message or a blank message if a response was not previously
received.

4 Blocks

4-6

Error Codes:

Error Code Condition
0 The service response was successfully retrieved and is available in the Resp

output.
1 The connection was not established within the specified Connection

timeout.
2 The response from the server was not received.
3 The service call failed for unknown reasons.

Dependencies

This output is enabled when the Show ErrorCode output port check box is on.
Data Types: uint8

Parameters
Source — Source for specifying service name
Select from ROS network | Specify your own

Source for specifying the service name:

• Select from ROS network — Use Select to select a service name. The Name and Type
parameters are set automatically. You must be connected to a ROS network.

• Specify your own — Enter a service name in Name and specify its service type in Type. You
must match a service name exactly.

Name — Service name
character vector

Service name, specified as a character vector. The service name must match a service name available
on the ROS service server. To see a list of valid services in a ROS network, see rosservice.

Type — Service type
character vector

Service type, specified as a character vector. Each service name has a corresponding type.

Connection timeout — Timeout for service server connection
5 (default) | positive numeric scalar

Timeout for service server connection, specified as a positive numeric scalar in seconds. If a
connection cannot be established with the ROS service server in this time, then ErrorCode outputs
1.

Keep persistent connection — Keep connection to service server
off (default) | on

Check this box to maintain a persistent connection with the ROS service server. When off, the block
creates a service client every time a request message is input into Req.

 Call Service

4-7

Show ErrorCode output port — Enable error code output port
on (default) | off

Check this box to output the ErrorCode output. If an error condition occurs, Resp outputs the last
response message or a blank message if response was not previously received.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Blank Message | Publish | Subscribe

Functions
rosservice | rossvcclient | rossvcserver

Topics
“Call and Provide ROS Services”
“Publish and Subscribe to ROS Messages in Simulink”

4 Blocks

4-8

Call Service
Call service in ROS 2 network
Library: ROS Toolbox / ROS 2

Description
The Call Service block takes a ROS 2 service request message, sends it to the ROS 2 service server,
and waits for a response. A ROS 2 service server should be set up somewhere on the network before
using this block. Check the available services on a ROS 2 network by executing ros2 service
list command, which uses ros2 function. Use ros2svcserver to set up a service server in
MATLAB.

Specify the name for your ROS 2 service and the service type in the block mask. If connected to a
ROS 2 network, you can select from a list of available services. You can create a blank service request
or response message to populate with data using the Blank Message block.

Always specify the quality of service (QoS) parameters in the block mask. QoS parameters for this
block must be compatible with the service server to send requests and receive responses.

Ports
Input

Req — Request message
nonvirtual bus

Request message, specified as a nonvirtual bus. The request message type corresponds to your
service type. To generate an empty request message bus to populate with data, use the Blank
Message block.
Data Types: bus

Output

Resp — Response message
nonvirtual bus

Response message, returned as a nonvirtual bus. The response is based on the input Req message.
The response message type corresponds to your service type. To generate an empty response
message bus to populate with data, use the Blank Message block.
Data Types: bus

ErrorCode — Error conditions for service call
integer

Error conditions for service call, specified as an integer. Each integer corresponds to a different error
condition for the service connection or the status of the service call. If an error condition occurs,

 Call Service

4-9

Resp outputs the last response message or a blank message if a response was not previously
received.

Error Codes:

Error Code Condition
0 The service response was successfully retrieved and is available in the Resp

output.
1 The connection was not established within the specified Connection

timeout.
2 The response from the server was not received.

Dependencies

This output is enabled when the Show ErrorCode output port check box is on.
Data Types: uint8

Parameters
Main

Source — Source for specifying service name
Select from ROS network | Specify your own

Source for specifying the service name:

• Select from ROS network — Use Select to select a service name. The Name and Type
parameters are set automatically. You must be connected to a ROS 2 network.

• Specify your own — Enter a service name in Name and specify its service type in Type. You
must match a service name exactly.

Name — Service name
character vector

Service name, specified as a character vector. The service name must match a service name available
on the ROS service server. To see a list of valid services in a ROS 2 network, see ros2.

Type — Service type
character vector

Service type, specified as a character vector. Each service name has a corresponding type.

Connection timeout — Timeout for service server connection
5 (default) | positive numeric scalar

Timeout for service server connection, specified as a positive numeric scalar in seconds. If a
connection cannot be established with the ROS service server in this time, then ErrorCode outputs
1.

Show ErrorCode output port — Enable error code output port
on (default) | off

4 Blocks

4-10

Check this box to output the ErrorCode output. If an error condition occurs, Resp outputs the last
response message or a blank message if response was not previously received.

Quality of Service (QoS)

History — Mode of storing requests in the queue
Keep last (default) | Keep all

Determines the mode of storing requests in the queue. If the queue fills with requests waiting to be
processed, then old requests will be dropped to make room for new. If set to Keep last, the queue
stores the number of requests set by the Depth parameter. If set to Keep all, the queue stores all
requests up to the MATLAB resource limits.

Depth — Size of the request queue
1 (default) | positive scalar

Number of requests stored in the request queue when History is set to Keep last.

Reliability — Delivery guarantee of requests
Reliable (default) | Best effort

Affects the guarantee of request delivery. If Reliable, then delivery is guaranteed, but may retry
multiple times. If Best effort, then attempt delivery and do not retry. Reliable setting is
recommended for services.

Durability — Persistence of requests
Volatile (default) | Transient local

Affects persistence of requests, which allows late-starting servers to receive the number of old
requests specified by Depth. If Volatile, then requests do not persist. If Transient local, then
the block will persist most recent requests.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Blank Message | Publish | Subscribe

Functions
ros2 | ros2svcclient | ros2svcserver

 Call Service

4-11

Coordinate Transformation Conversion
Convert to a specified coordinate transformation representation
Library: Robotics System Toolbox / Utilities

Navigation Toolbox / Utilities
ROS Toolbox / Utilities
UAV Toolbox / Utilities

Description
The Coordinate Transformation Conversion block converts a coordinate transformation from the input
representation to a specified output representation. The input and output representations use the
following forms:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.

To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

Ports
Input

Input transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix

Input transformation, specified as a coordinate transformation. The following representations are
supported:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix

4 Blocks

4-12

• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.

To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
3-element column vector

Translation vector, specified as a 3-element column vector, [x y z], which corresponds to a
translation in the x, y, and z axes respectively. This port can be used to input or output the translation
information separately from the rotation vector.
Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port. Enable the port by clicking Show TrVec input/
output port.

Output Arguments

Output transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix

Output transformation, returned as a coordinate transformation with the specified representation.
The following representations are supported:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
three-element column vector

Translation vector, returned as a three-element column vector, [x y z], which corresponds to a
translation in the x, y, and z axes respectively. This port can be used to input or output the translation
information separately from the rotation vector.
Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port. Enable the port by clicking Show TrVec input/
output port.

 Coordinate Transformation Conversion

4-13

Parameters
Representation — Input or output representation
Axis-Angle | Euler Angles | Homogeneous Transformation | Rotation Matrix |
Translation Vector | Quaternion

Select the representation for both the input and output port for the block. If you are using a
transformation with only orientation information, you can also select the Show TrVec input/
output port when converting to or from a homogeneous transformation.

Axis rotation sequence — Order of Euler angle axis rotations
ZYX (default) | ZYZ | XYZ

Order of the Euler angle axis rotations, specified as ZYX, ZYZ, or XYZ. The order of the angles in the
input or output port Eul must match this rotation sequence. The default order ZYX specifies an
orientation by:

• Rotating about the initial z-axis
• Rotating about the intermediate y-axis
• Rotating about the second intermediate x-axis

Dependencies

You must select Euler Angles for the Representation input or output parameter. The axis
rotation sequence only applies to Euler angle rotations.

Show TrVec input/output port — Toggle TrVec port
off (default) | on

Toggle the TrVec input or output port when you want to specify or receive a separate translation
vector for position information along with an orientation representation.

Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2017b

4 Blocks

4-14

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
rosmessage

 Coordinate Transformation Conversion

4-15

Current Time
Retrieve current ROS time or system time
Library: ROS Toolbox / ROS

Description
The Current Time block outputs the current ROS or system time. ROS Time is based on the system
clock of your computer or the /clock topic being published on the ROS node.

Use this block to synchronize your simulation time with your connected ROS node.

If the use_sim_time ROS parameter is set to true, the block returns the simulation time published
on the /clock topic. Otherwise, the block returns the system time of your machine.

Ports
Output

Time — ROS time
bus | scalar

ROS time, returned as a bus signal or a scalar. The bus represents a rosgraph_msgs/Clock ROS
message with Sec and NSec elements. The scalar is the ROS time in seconds. If no time has been
received on the /clock topic, the block outputs 0.
Data Types: bus | double

4 Blocks

4-16

https://wiki.ros.org/Clock

Parameters
Output format — Format of ROS time
bus (default) | double

Format of ROS Time output, specified as either bus or double.

Sample time — Interval between outputs
-1 (default) | numeric scalar

Interval between outputs, specified as a numeric scalar.

For more information, see “Specify Sample Time” (Simulink).

Tips
• To set the use_sim_time parameters and get time from a /clock topic:

Connect to a ROS network, then use the Set Parameter block or set the parameter in the MATLAB
command window:

ptree = rosparam;
set(ptree,'/use_sim_time',true)

Usually, the ROS node that publishes on the /clock topic sets up the parameter.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Set Parameter | Publish | Get Parameter

Functions
rostime | rosparam | get | rospublisher | set

External Websites
ROS Time

 Current Time

4-17

https://wiki.ros.org/Clock

Current Time
Retrieve current ROS 2 time or system time
Library: ROS Toolbox / ROS 2

Description
The Current Time block outputs the current ROS 2 time. ROS 2 time is based on the system clock of
your computer or the /clock topic being published on the ROS 2 network.

If the use_sim_time ROS 2 parameter is set to true, the block returns the simulation time
published on the /clock topic. Otherwise, the block returns the system time of your machine.

Ports
Output

Time — ROS 2 time
bus | scalar

ROS 2 time, returned as a bus signal or a scalar. The Output format parameter determines the
format of this output port. The bus represents a builtin_interfaces/Time ROS 2 message with
sec and nanosec elements. The scalar is the ROS 2 time in seconds. If the block does not receive a
time from the /clock topic, this output is 0.
Data Types: bus | double

4 Blocks

4-18

Parameters
Output format — Format of ROS 2 time
bus (default) | double

Format of ROS 2 Time output, specified as either bus or double.

Sample time — Interval between outputs
-1 (default) | numeric scalar

Interval between outputs, specified as a numeric scalar.

For more information, see “Specify Sample Time” (Simulink).

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Get Parameter | Publish

Functions
ros2time | ros2duration

Objects
ros2rate | ros2publisher

 Current Time

4-19

Get Parameter
Get values from ROS parameter server
Library: ROS Toolbox / ROS

Description
The Get Parameter block outputs the value of the specified ROS parameter. The block uses the ROS
node of the Simulink model to connect to the ROS network. This node is created when you run the
model and is deleted when the model terminates. If the model does not have a node, the block creates
one.

On each sample hit, the block checks the ROS parameter server for the specified ROS parameter and
outputs its value.

Input/Output Ports
Output

Value — Parameter value
scalar | logical | uint8 array

Parameter value from the ROS network. The value depends on the Data type parameter.

ErrorCode — Status of ROS parameter
0 | 1 | 2 | 3

Status of ROS parameter, specified as one of the following:

• 0 — ROS parameter retrieved successfully. The retrieved value is output in the Value port.
• 1 — No ROS parameter with specified name found. If there is no known value, Value is set to the

last received value or to Initial value.
• 2 — ROS parameter retrieved, but its type is different than the specified Data type. If there is no

known value, Value is set to the last received value or to Initial value.
• 3 — For string parameters, the incoming string has been truncated based on the specified length.

Length — Length of string parameter
integer

Length of the string parameter, returned as an integer. This length is the number of elements of the
uint8 array or the number of characters in the string that you cast to uint8.

Note When getting string parameters from the ROS network, an ASCII value of 13 returns an error
due to its incompatible character type.

4 Blocks

4-20

Dependencies

To enable this port, set the Data type to uint8[] (string).

Parameters
Source — Source for specifying the parameter name
Select from ROS network | Specify your own

Source for specifying the parameter name as one of the following:

• Select from ROS network — Use Select to select a parameter name. The Data type
parameter is set automatically. You must be connected to a ROS network.

• Specify your own — Enter a parameter name in Name and specify its data type in Data type.
You must match a parameter name exactly.

Name — Parameter name
string

Parameter name to get from the ROS network, specified as a string. When Source is set to Select
from ROS network, use Select to select an existing parameter. You must be connected to a ROS
network to get a list of parameters. Otherwise, specify the parameter and data type.

Parameter name strings must follow the rules of ROS graph names. Valid names have these
characteristics:

• The first character is an alpha character ([a-z|A-Z]), tilde (~), or forward slash (/).
• Subsequent characters are alphanumeric ([0-9|a-z|A-Z]), underscores(_), or forward slashes (/).

Data type — Data type of your parameter
double | int32 | boolean | uint8[] (string)

Data type of your parameter, specified as a string. The uint8[] (string) enables the Maximum
length parameter.

Note The uint8[] (string) data type is an array of ASCII values corresponding to the characters
in a string. When getting string parameters, you can create a MATLAB Function block to compare the
string to a desired parameter value. For more information, see “ROS Parameters in Simulink”.

Data Types: double | int32 | Boolean | uint8

Maximum length — Maximum length of the uint8 array
scalar

Maximum length of the uint8 array, specified as a scalar. If the parameter string has a length
greater than Maximum length, the ErrorCode output is set to 3.
Dependencies

To enable this port, set the Data type to uint8[] (string).

Initial value — Default parameter value output
double | int32 | boolean | uint8

 Get Parameter

4-21

Default parameter value output from when an error occurs and no valid value has been received from
the parameter server. The data type must match the specified Data type.

Sample time — Interval between outputs
inf (default) | scalar

Interval between outputs, specified as a scalar. This default value indicates that the block output
never changes. Using this value speeds simulation and code generation by eliminating the need to
recompute the block output. Otherwise, the block outputs a new blank message at each interval of
Sample time.

For more information, see “Specify Sample Time” (Simulink).

Show ErrorCode output port — Display error code output
on | off

To enable error code output, select this parameter. When you clear this parameter, the ErrorCode
output port is removed from the block. The status options are:

• 0 — ROS parameter retrieved successfully. The retrieved value is output in the Value port.
• 1 — No ROS parameter with specified name found. If there is no known value, Value is set to the

last received value or to Initial value.
• 2 — ROS parameter retrieved, but its type is different than the specified Data type. If there is no

known value, Value is set to the last received value or to Initial value.
• 3 — For string parameters, the incoming string has been truncated based on the specified length.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Set Parameter

Topics
“ROS Parameters in Simulink”

External Websites
ROS Parameter Server
ROS Graph Names

4 Blocks

4-22

https://wiki.ros.org/Parameter%20Server
https://wiki.ros.org/Names

Get Parameter
Get ROS 2 parameter value
Library: ROS Toolbox / ROS 2

Description
The Get Parameter block outputs the value of the specified ROS 2 parameter associated with the
node of the Simulink model. Simulink creates this node when you run the model and deletes it when
the model terminates. If the model does not have a parameter, the block creates one.

At the start of the simulation, the block initializes the ROS 2 parameter with the specified initial
value. For each sample hit, the block checks the ROS 2 parameter and outputs its value.

Ports
Output

Value — Parameter value
scalar | array

Parameter value from the ROS 2 network, returned as a scalar or array. The type and size of this
output depends on the Data type parameter.
Data Types: double | int64 | Boolean | uint8[]

Length — Length of array parameter
scalar

Length of the array parameter, returned as an integer scalar. This length is the number of elements of
the array or the number of characters in the string that you cast to uint8.

Note When getting string parameters from the ROS 2 network, an ASCII value of 13 returns an error
due to its incompatible character type.

Dependencies

To enable this port, set the Data type parameter to uint8[], double[] , int64[] or boolean[].

Parameters
Name — Parameter name
mynamespace.param (default) | string

Parameter name to get from the ROS 2 network, specified as a string. Valid parameter names have
these characteristics:

 Get Parameter

4-23

• The first character is an alpha character ([a-z|A-Z]), tilde (~), or forward slash (/).
• Subsequent characters are alphanumeric ([0-9|a-z|A-Z]), underscores(_), or forward slashes (/).

Data type — Data type of parameter
double (default) | int32 | boolean | uint8[] | double[] | int64[] | boolean[]

Data type of parameter, specified as a string. Array data types such as uint8[], double[], int64[]
and boolean[] enable the Maximum length parameter. If the data type changes during runtime,
the block throws a warning.

Note The uint8[] data type is an array of ASCII values corresponding to the characters in a string.
When getting string parameters, you can create a MATLAB Function block to compare the string to a
desired parameter value.

Maximum length — Maximum length of array
16 (default) | numeric scalar

Maximum length of the array, specified as a scalar. If the array has a length greater than Maximum
length, the block returns a warning.

Dependencies

To enable this parameter, set the Data type parameter to uint8[], double[], int64[] or
boolean[].

Initial value — Default parameter value output
0.0 (default) | numeric scalar

Default parameter value output for when an error occurs and no valid value is received from the
parameter. The specified value must be a valid value for the specified Data type.

Sample time — Interval between outputs
-1 (default) | numeric scalar

Interval between outputs, specified as a numeric scalar. The default value of -1 indicates that the
block inherits the output sample time from the model. Otherwise, the block outputs a new blank
message at each interval of Sample time.

For more information, see “Specify Sample Time” (Simulink).

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

4 Blocks

4-24

See Also
ros2param

 Get Parameter

4-25

Header Assignment
Update fields of ROS message header
Library: ROS Toolbox / ROS

Description
The Header Assignment block updates the values in the header field of a ROS message. When a ROS
message contains a header field of type std_msgs/Header, you can use this block to update the
frame_id and stamp values in its header field. During each sample hit, the block updates the
frame_id and stamp fields in the header. The accuracy of the timestamp depends on the step size of
the solver. Smaller step sizes result in more accurate timestamps.

Ports
Input

InputMsg — ROS message to update
nonvirtual bus

ROS message with a std_msgs/Header field, specified as a nonvirtual bus.
Data Types: bus

Output

OutputMsg — ROS message with an updated header
nonvirtual bus

ROS message with an updated header, returned as a nonvirtual bus.
Data Types: bus

Parameters
Set Frame ID — Specify frame associated with message data
off (default) | on

Select this parameter to specify the frame that the message data is associated with. Specify the frame
ID in the text box enabled when you select this parameter. The block populates the frame_id field of
the ROS message header with the specified frame.
Example: base_link

Set Timestamp — Set timestamp in header
off (default) | on

4 Blocks

4-26

Select this parameter to set the stamp value of the header to the current ROS system time. In order
to use the custom time published on the /clock topic instead of the ROS system time, set the
use_sim_time ROS parameter to true.

Header field name — Specify Header field name
Use the default Header field name (default) | Specify your own

Specify the name of the Header field as one of the following:

• Use the default Header field name — The block sets the name of the header field in the
ROS message to the default value, Header.

• Specify your own — Enables a text box in which you can specify a custom name for the header
field in the ROS message.

Example: my_custom_header

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blank Message | Publish

 Header Assignment

4-27

Publish
Send messages to ROS network
Library: ROS Toolbox / ROS

Description
The Publish block takes in as its input a Simulink nonvirtual bus that corresponds to the specified
ROS message type and publishes it to the ROS network. It uses the node of the Simulink model to
create a ROS publisher for a specific topic. This node is created when the model runs and is deleted
when the model terminates. If the model does not have a node, the block creates one.

On each sample hit, the block converts the Msg input from a Simulink bus signal to a ROS message
and publishes it. The block does not distinguish whether the input is a new message but merely
publishes it on every sample hit. For simulation, this input is a MATLAB ROS message. In code
generation, it is a C++ ROS message.

Input/Output Ports
Input

Msg — ROS message
nonvirtual bus

ROS message, specified as a nonvirtual bus. To specify the type of ROS message, use the Message
type parameter.
Data Types: bus

Parameters
Topic source — Source for specifying topic name
Select from ROS network | Specify your own

Source for specifying the topic name, specified as one of the following:

• Select from ROS network — Use Select to select a topic name. The Topic and Message type
parameters are set automatically. You must be connected to a ROS network.

• Specify your own — Enter a topic name in Topic and specify its message type in Message
type. You must match a topic name exactly.

Topic — Topic name to publish to
string

Topic name to publish to, specified as a string. When Topic source is set to Select from ROS
network, use Select to select a topic from the ROS network. You must be connected to a ROS

4 Blocks

4-28

network to get a list of topics. Otherwise, set Topic source to Specify your own and specify the
topic you want.

Message type — ROS message type
string

ROS message type, specified as a string. Use Select to select from a full list of supported ROS
messages. Service message types are not supported and are not included in the list.

Length of publish queue — Message queue length
1 (default) | integer

Message queue length in code generation, specified as an integer.In simulation, the message queue is
always 1 and cannot be adjusted. To ensure each message is processed, use a smaller model step or
only execute the model when publishing a new message.

Tips
You can also set the addresses for the ROS master and node host by clicking the Configure network
addresses link in the block.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blank Message | Subscribe

Topics
“Composite Interface Guidelines” (Simulink)
“ROS Simulink Interaction”

 Publish

4-29

Publish
Send messages to ROS 2 network
Library: ROS Toolbox / ROS 2

Description
The Publish ROS 2 block takes in as its input a Simulink non-virtual bus that corresponds to the
specified ROS 2 message type and publishes it to the ROS 2 network. It uses the node of the Simulink
model to create a ROS 2 publisher for a specific topic. This node is created when the model runs and
is deleted when the model terminates. If the model does not have a node, the block creates one.

On each sample hit, the block converts the Msg input from a Simulink bus signal to a ROS 2 message
and publishes it. The block does not distinguish whether the input is a new message but instead
publishes it on every sample hit. For simulation, this input is a MATLAB ROS 2 message. In code
generation, it is a C++ ROS 2 message.

Ports
Input

Msg — ROS message
non-virtual bus

ROS message, specified as a nonvirtual bus. To specify the type of ROS message, use the Message
type parameter.
Data Types: bus

Parameters
Main

Topic source — Source for specifying topic name
Select from ROS network | Specify your own

Source for specifying the topic name, specified as one of the following:

• Select from ROS network — Use Select to select a topic name. The Topic and Message type
parameters are set automatically. You must be connected to a ROS network.

• Specify your own — Enter a topic name in Topic and specify its message type in Message
type. You must match a topic name exactly.

Topic — Topic name to publish to
string

Topic name to publish to, specified as a string. When Topic source is set to Select from ROS
network, use Select to select a topic from the ROS network. You must be connected to a ROS 2

4 Blocks

4-30

network to get a list of topics. Otherwise, set Topic source to Specify your own and specify the
topic you want.

Message type — ROS message type
string

ROS message type, specified as a string. Use Select to select from a full list of supported ROS
messages. Service message types are not supported and are not included in the list.

Quality of Service (QoS)

History — Mode of storing messages in the queue
Keep last (default) | Keep all

Determines the mode of storing messages in the queue. The queued messages will be sent to late-
joining subscribers. If the queue fills with messages waiting to be processed, then old messages will
be dropped to make room for new. If set to 'keeplast', the queue stores the number of messages
set by the Depth parameter. If set to 'keepall', the queue stores all messages up to the MATLAB
resource limits.

Depth — Size of the message queue
1 (default) | positive scalar

Number of messages stored in the message queue when History is set to Keep last.

Reliability — Delivery guarantee of messages
Reliable (default) | Best effort

Affects the guarantee of message delivery. If Reliable, then delivery is guaranteed, but may retry
multiple times. If Best effort, then attempt delivery and do not retry.

Durability — Persistence of messages
Volatile (default) | Transient local

Affects persistence of messages in publishers, which allows late-joining subscribers to receive the
number of old messages specified by Depth. If Volatile, then messages do not persist. If
Transient local, then publisher will persist most recent messages.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blank Message | Subscribe

 Publish

4-31

Read Data
Play back data from log file
Library: ROS Toolbox / ROS

Description
The Read Data block plays back rosbag logfiles by outputting the most recent message from the log
file based on the current simulation time. You must load a rosbag log file (.bag) and specify the
Topic in the block mask to get a stream of messages from the file. Messages on this topic are output
from the file in sync with the simulation time.

In the Read Data block mask, click Load log file data to specify a rosbag log file (.bag) to load. In
the Load Log File window, specify a Start time offset, in seconds, to start playback at a certain
point in the file. Duration specifies how long the block should play back this file in seconds. By
default, the block outputs all messages for the specific Topic in the file.

Ports
Output

IsNew — New message indicator
0 | 1

New message indicator, returned as a logical. If the output is 1, then a new message was loaded from
the rosbag file at that time. This output can be used to trigger subsystems for processing new
messages received.

Msg — ROS message
nonvirtual bus

ROS message, returned as a nonvirtual bus. Messages are output in the order they are stored in the
rosbag and synced with the simulation time.
Data Types: bus

Parameters
Topic — Topic name to extract from log file
string

Topic name to extract from log file, specified as a string. This topic must exist in the loaded rosbag.
Click the Load rosbag file Use Select ... to inspect the topics available and select a specific topic.

Sample time — Interval between outputs
–1 (default) | scalar

4 Blocks

4-32

Interval between outputs, specified as a scalar. In simulation, the sample time follows simulation time
and not actual wall-clock time.

This default value indicates that the block sample time is inherited.

For more information about the inherited sample time type, see “Specify Sample Time” (Simulink).

Version History
Introduced in R2019b

See Also
Blocks
Publish | Subscribe | Read Image | Read Point Cloud

Functions
rosbag | readMessages | select

Topics
“Work with ROS Messages in Simulink”
“Work with rosbag Logfiles”

 Read Data

4-33

Read Data
Play back data from ROS 2 log file
Library: ROS Toolbox / ROS 2

Description
The Read Data block plays back ROS 2 bag log files by outputting the most recent message from the
log file, based on the current simulation time. You must load a ROS 2 bag log file (.db3) and specify a
topic, using the Topic parameter, to get a stream of messages from the file. The block outputs
messages of this topic from the file in sync with the simulation time.

In the Read Data block mask, select Load logfile data to specify a ROS 2 bag log file (.db3) to load.
In the Load Logfile dialog box, specify the full path to the log file, or select Browse and navigate to
the logfile you want to load. To start playback at a certain point in the file, specify a Start time
offset, in seconds. To specify how long the block plays back this file, from the specified start time,
specify a Duration, in seconds. By default, the block outputs all messages for the specified topic in
the file.

Ports
Output

IsNew — New message indicator
logical scalar

New message indicator, returned as a logical scalar. If the output is 1, then the block loaded a new
message from the ROS 2 bag log file at the corresponding time. This output can be used to trigger
subsystems for processing new messages.
Data Types: Boolean

Msg — ROS 2 message
nonvirtual bus

ROS 2 message, returned as a nonvirtual bus. Messages are returned in the order they are stored in
the ROS 2 bag log file and synced with the simulation time.
Data Types: bus

Parameters
Topic — Topic name to extract from log file
string scalar | character vector

Specify the name of the topic to extract from the log file. This topic must exist in the loaded ROS 2
bag log file. Click Select to inspect the available topics and select a specific topic.

4 Blocks

4-34

Sample time — Interval between outputs
-1 (default) | scalar

Specify the interval between outputs. In simulation, the sample time follows simulation time rather
than wall-clock time.

The default value indicates that the block sample time is inherited. For more information about the
inherited sample time type, see “Specify Sample Time” (Simulink).

Version History
Introduced in R2021b

See Also
Blocks
Publish | Subscribe | Read Image | Read Point Cloud

Functions
ros2bagreader | readMessages | select

 Read Data

4-35

Read Image
Extract image from ROS Image message
Library: ROS Toolbox / ROS

Description
The Read Image block extracts an image from a ROS Image or CompressedImage message. You can
select the ROS message parameters of a topic active on a live ROS network or specify the message
parameters separately. The ROS messages are specified as a nonvirtual bus. Use the Subscribe block
output to receive a message from a ROS network and input the message to the Read Image block.

Note When reading ROS image messages from the network, the Data property of the message can
exceed the maximum array length set in Simulink. To increase the maximum array length for all
message types in the model, from the Prepare section under Simulation tab, select ROS Toolbox >
Variable Size Messages. Uncheck Use default limits for this message type and then in the
Maximum length column, increase the length based on the number of pixels in the image.

Ports
Input

Msg — ROS Image or CompressedImage message
nonvirtual bus

ROS Image or CompressedImage message, specified as a nonvirtual bus. You can use the Subscribe
block to get a message from an active ROS network.
Data Types: bus

Output

Image — Extracted image signal
M-by-N-by-3 matrix | M-by-N matrix

Extracted image signal from ROS message, returned as an M-by-N-by-3 matrix for color images, and
an M-by-N matrix for grayscale images. The matrix contains the pixel data from the Data property of
the ROS message.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16

AlphaChannel — Alpha channel for image
M-by-N matrix

Alpha channel for image, returned as an M-by-N matrix. This matrix is the same height and width as
the image output. Each element has a value in the range [0,1] that indicates the opacity of the
corresponding pixel, with a value of 0 being completely transparent.

4 Blocks

4-36

Note For CompressedImage messages, the alpha channel returns all zeros if the Show Alpha
output port is enabled.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16

ErrorCode — Error code for image conversion
scalar

Error code for image conversion, returned as a scalar. The error code values are:

• 0 — Successfully converted the image message.
• 1 — Incorrect image encoding. Check that the incoming message encoding matches the Image

Encoding parameter.
• 2 — The dimensions of the image message exceed the limits specified in the Maximum Image

Size parameter.
• 3 — The Data field of the image message was truncated. See “Manage Array Sizes for ROS

Messages in Simulink” to increase the maximum length of the array.
• 4 — Image decompression failed.

Data Types: uint8

Parameters
Maximum Image Size — Maximum image size
[2000 2000] (default) | two-element vector

Maximum image size, specified as a two-element [height width] vector.

Click Configure using ROS to set this parameter automatically using an active topic on a ROS
network. You must be connected to the ROS network.

Image Encoding — Image encoding
rgb8 (default) | rgba8 | ...

Image encoding for the input ImageMsg. Select the supported encoding type which matches the
Encoding property of the message. For more information about encoding types, see rosReadImage.

Show Alpha output port — Toggle AlphaChannel port
off (default) | on

Toggle Alpha channel output port if your encoding supports an Alpha channel.

Dependencies

Only certain encoding types support alpha channels. The Image Encoding parameter determines if
this parameter appears in the block mask.

Show ErrorCode output port — Toggle ErrorCode port
on (default) | off

Toggle the ErrorCode port to monitor errors.

 Read Image

4-37

Output variable-size signals — Toggle variable-size signal output
off (default) | on

Toggle variable-size signal output. Variable-sized signals should only be used if the image size is
expected to change over time. For more information about variable sized signals, see “Variable-Size
Signal Basics” (Simulink).

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• Requires a valid version of OpenCV and cv_bridge package to be installed for deployment.

See Also
rosReadImage | Subscribe | Blank Message | Image | CompressedImage

Topics
“Manage Array Sizes for ROS Messages in Simulink”
“Variable-Size Signal Basics” (Simulink)

4 Blocks

4-38

Read Image
Extract image from ROS 2 Image message
Library: ROS Toolbox / ROS 2

Description
The Read Image block extracts an image from a ROS 2 Image or CompressedImage message. You
can select the message parameters of a topic active on a live ROS 2 network, or specify the message
parameters separately. The ROS 2 messages are specified as a nonvirtual bus. Use the Subscribe
block output to receive a message from a ROS 2 network and input the message to the Read Image
block.

Note When reading ROS 2 image messages from the network, the Data property of the message can
exceed the maximum array length set in Simulink. Follow the steps below to increase the maximum
array length for all message types in the model:

1 Enable ROS options by selecting the Robot Operating System (ROS) app under the Apps tab
and configure the ROS network parameters appropriately.

2 From the Prepare section under Simulation tab, select ROS Toolbox > Variable Size
Messages.

3 Uncheck Use default limits for this message type and then in the Maximum length column,
increase the length based on the number of pixels in the image.

Ports
Input

Msg — ROS 2 Image or CompressedImage message
nonvirtual bus

ROS 2 Image or CompressedImage message, specified as a nonvirtual bus. You can use the
Subscribe block to get a message from an active ROS 2 network.
Data Types: bus

Output

Image — Extracted image signal
M-by-N-by-3 matrix | M-by-N matrix

Extracted image signal from a ROS 2 message, returned as an M-by-N-by-3 matrix for color images,
and an M-by-N matrix for grayscale images. The matrix contains the pixel data from the Data
property of the ROS 2 message.

 Read Image

4-39

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16

AlphaChannel — Alpha channel for image
M-by-N matrix

Alpha channel for image, returned as an M-by-N matrix. This matrix is the same height and width as
the image output. Each element has a value in the range [0,1] that indicates the opacity of the
corresponding pixel, with a value of 0 being completely transparent.

Note For CompressedImage messages, the alpha channel returns all zeros if the Show Alpha
output port is enabled.

Dependencies

Enable Show Alpha output port parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16

ErrorCode — Error code for image conversion
scalar

Error code for image conversion, returned as a scalar. The error code values are:

• 0 — Successfully converted the image message.
• 1 — Incorrect image encoding. Check that the incoming message encoding matches the Image

Encoding parameter.
• 2 — The dimensions of the image message exceed the limits specified in the Maximum Image

Size parameter.
• 3 — The Data field of the image message was truncated. See “Manage Array Sizes for ROS

Messages in Simulink” to increase the maximum length of the array.
• 4 — Image decompression failed.

Data Types: uint8

Parameters
Maximum image size — Maximum image size
[2000 2000] (default) | two-element vector

Maximum image size, specified as a two-element [height width] vector.

Select Configure using ROS 2... to set this parameter automatically using an active topic on a ROS
2 network. You must be connected to the ROS 2 network.

Image encoding — Image encoding
rgb8 (default) | rgba8 | ...

Image encoding for the input ImageMsg. Select the encoding type that matches the Encoding
property of the message. For more information about encoding types, see rosReadImage.

Show Alpha output port — AlphaChannel port toggle
off (default) | on

4 Blocks

4-40

Toggle alpha channel output port on or off, if the selected encoding type supports alpha channels.

Dependencies

To enable this parameter, set the Image Encoding parameter to an encoding type that supports
alpha channels.

Show ErrorCode output port — Toggle ErrorCode port
on (default) | off

Toggle the ErrorCode port on or off, to monitor errors.

Output variable-size signals — Variable-size signal output toggle
off (default) | on

Toggle whether to output a variable-size signal. Use variable-sized signals only if you expect the
image size to change over time. For more information about variable-size signals, see “Variable-Size
Signal Basics” (Simulink).

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• For remote deployment, OpenCV and cv_bridge ROS package must be installed on the remote
device.

• Local host deployment is not supported.

See Also
rosReadImage | Subscribe | Blank Message

Topics
“Manage Array Sizes for ROS Messages in Simulink”
“Variable-Size Signal Basics” (Simulink)

 Read Image

4-41

Read Point Cloud
Extract point cloud from ROS PointCloud2 message
Library: ROS Toolbox / ROS

Description
The Read Point Cloud block extracts a point cloud from a ROS PointCloud2 message. You can select
the ROS message parameters of a topic active on a live ROS network or specify the message
parameters separately. The ROS messages are specified as a nonvirtual bus. Use the Subscribe block
to receive a message from a ROS network and input the message to the Read Point Cloud block.

Note When reading ROS point cloud messages from the network, the Data property of the message
can exceed the maximum array length set in Simulink. To increase the maximum array length for all
message types in the model, from the Prepare section under Simulation tab, select ROS Toolbox >
Variable Size Messages. Uncheck Use default limits for this message type and then in the
Maximum length column, increase the length based on the number of points in the point cloud.

Ports
Input

Msg — ROS PointCloud2 message
nonvirtual bus

ROS PointCloud2 message, specified as a nonvirtual bus. You can use the Subscribe block to get a
message from the ROS network.
Data Types: bus

Output

XYZ — XYZ coordinates
matrix | array

x-, y-, and z- coordinates of each point in the point cloud data, returned as either an N-by-3 matrix or
h-by-w-by-3 array. N is the number of points in the point cloud. h and w are the height and width of
the image, in pixels. To get the x-, y-, and z- coordinates as an array, select the Preserve point cloud
structure parameter.
Data Types: single

RGB — RGB values for each point
matrix | array

RGB values for each point of the point cloud data, output as either an N-by-3 matrix or h-by-w-by-3
array. N is the number of points in the point cloud. h and w are the height and width of the image in

4 Blocks

4-42

pixels. The RGB values specify the red, green, and blue color intensities in the range of [0,1].To
return the RGB values as an array, select the Preserve point cloud structure parameter.
Data Types: double

Intensity — Intensity values for each point
array | matrix

Intensity value for each point of the point cloud data, returned as either an array or a h-by-w matrix.
h and w are the height and width of the image in pixels. To return the intensity values as a matrix,
select the Preserve point cloud structure parameter.
Data Types: single

ErrorCode — Error code for image conversion
scalar

Error code for image conversion, returned as a scalar. The error code values are:

• 0 – Successfully converted the point cloud message.
• 1 – The dimensions of the incoming point cloud exceed the limits set in the Maximum point

cloud size parameter.
• 2 – One of the variable-length arrays in the incoming message was truncated. For more

information on increasing the maximum length of the array, see “Manage Array Sizes for ROS
Messages in Simulink”.

• 3 – The X, Y, or Z field of the point cloud message is missing.
• 4 – The point cloud does not contain any RGB color data. This error only occurs if you enable the

Show RGB output port parameter.
• 5 – The point cloud does not contain any intensity data. This error only occurs if you enable the

Show Intensity output port parameter.

For certain error codes, the block truncates the data or populates with NaN values where appropriate.
Data Types: uint8

Parameters
Maximum point cloud size — Maximum point cloud image size
[480 640] (default) | two-element vector

Maximum point cloud image size, specified as a two-element [height width] vector.

Select Configure using ROS to set this parameter automatically using an active topic on a ROS
network. You must be connected to the ROS network.

Preserve point cloud structure — Point cloud data output shape preservation
off (default) | on

When this parameter is selected, the block preserves the point cloud data output shape for XYZ,
RGB, and Intensity outputs. Each output corresponds to the resolution of the original image. The
XYZ and RGB outputs become multidimensional arrays, and the Intensity output becomes a matrix.

Show RGB output port — RGB port toggle
off (default) | on

 Read Point Cloud

4-43

Select this parameter to enable the RGB port. If you enable this parameter, the message must
contain RGB data or the block returns an error code.

Show Intensity output port — Intensity port toggle
off (default) | on

Select this parameter to enable the Intensity port. If you enable this parameter, the message must
contain intensity data or the block returns an error code.

Show ErrorCode output port — ErrorCode port toggle
on (default) | off

Select this parameter to enable the ErrorCode port and monitor errors.

Output variable-size signals — Variable-size signal output toggle
off (default) | on

Toggle whether to output a variable-size signal. Use variable-sized signals only if you expect the
image size to change over time. For more information about variable-size signals, see “Variable-Size
Signal Basics” (Simulink).

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Subscribe | Blank Message | PointCloud2

Topics
“Manage Array Sizes for ROS Messages in Simulink”
“Variable-Size Signal Basics” (Simulink)

4 Blocks

4-44

Read Point Cloud
Extract point cloud from ROS 2 PointCloud2 message
Library: ROS Toolbox / ROS 2

Description
The Read Point Cloud block extracts a point cloud from a ROS 2 PointCloud2 message. You can
select the message parameters of a topic active on a live ROS 2 network, or specify the message
parameters separately. The ROS 2 messages are specified as a nonvirtual bus. Use the Subscribe
block to receive a message from a ROS 2 network and input the message to the Read Point Cloud
block.

Note When reading ROS 2 point cloud messages from the network, the Data property of the
message can exceed the maximum array length set in Simulink. Follow the steps below to increase
the maximum array length for all message types in the model:

1 Enable ROS options by selecting the Robot Operating System (ROS) app under the Apps tab
and configure the ROS network parameters appropriately.

2 From the Prepare section under Simulation tab, select ROS Toolbox > Variable Size
Messages.

3 Uncheck Use default limits for this message type and then in the Maximum length column,
increase the length based on the number of points in the point cloud.

Ports
Input

Msg — ROS 2 PointCloud2 message
nonvirtual bus

ROS 2 PointCloud2 message, specified as a nonvirtual bus. You can use the Subscribe block to get a
message from the ROS 2 network.
Data Types: bus

Output

XYZ — XYZ coordinates
matrix | array

x-, y-, and z- coordinates of each point in the point cloud data, returned as either an N-by-3 matrix or
h-by-w-by-3 array. N is the number of points in the point cloud. h and w are the height and width of
the image, in pixels. To get the x-, y-, and z- coordinates as an array, select the Preserve point cloud
structure parameter.

 Read Point Cloud

4-45

Data Types: single

RGB — RGB values for each point
matrix | array

RGB values for each point of the point cloud data, output as either an N-by-3 matrix or h-by-w-by-3
array. N is the number of points in the point cloud. h and w are the height and width of the image in
pixels. The RGB values specify the red, green, and blue color intensities in the range of [0,1].To
return the RGB values as an array, select the Preserve point cloud structure parameter.

Dependencies

Enable Show RGB output port parameter.
Data Types: double

Intensity — Intensity values for each point
array | matrix

Intensity value for each point of the point cloud data, returned as either an array or a h-by-w matrix.
h and w are the height and width of the image in pixels. To return the intensity values as a matrix,
select the Preserve point cloud structure parameter.

Dependencies

Enable Show Intensity output port parameter.
Data Types: single

ErrorCode — Error code for image conversion
scalar

Error code for image conversion, returned as a scalar. The error code values are:

• 0 – Successfully converted the point cloud message.
• 1 – The dimensions of the incoming point cloud exceed the limits set in the Maximum point

cloud size parameter.
• 2 – One of the variable-length arrays in the incoming message was truncated. For more

information on increasing the maximum length of the array, see “Manage Array Sizes for ROS
Messages in Simulink”.

• 3 – The X, Y, or Z field of the point cloud message is missing.
• 4 – The point cloud does not contain any RGB color data. This error only occurs if you enable the

Show RGB output port parameter.
• 5 – The point cloud does not contain any intensity data. This error only occurs if you enable the

Show Intensity output port parameter.

For certain error codes, the block truncates the data or populates with NaN values where appropriate.
Data Types: uint8

Parameters
Maximum point cloud size — Maximum point cloud image size
[480 640] (default) | two-element vector

4 Blocks

4-46

Maximum point cloud image size, specified as a two-element [height width] vector.

Select Configure using ROS 2... to set this parameter automatically using an active topic on a ROS
2 network. You must be connected to the ROS 2 network.

Preserve point cloud structure — Point cloud data output shape preservation
off (default) | on

When this parameter is selected, the block preserves the point cloud data output shape for XYZ,
RGB, and Intensity outputs. Each output corresponds to the resolution of the original image. The
XYZ and RGB outputs become multidimensional arrays, and the Intensity output becomes a matrix.

Show RGB output port — RGB port toggle
off (default) | on

Select this parameter to enable the RGB port. If you enable this parameter, the message must
contain RGB data or the block returns an error code.

Show Intensity output port — Intensity port toggle
off (default) | on

Select this parameter to enable the Intensity port. If you enable this parameter, the message must
contain intensity data or the block returns an error code.

Show ErrorCode output port — ErrorCode port toggle
on (default) | off

Select this parameter to enable the ErrorCode port and monitor errors.

Output variable-size signals — Variable-size signal output toggle
off (default) | on

Toggle whether to output a variable-size signal. Use variable-sized signals only if you expect the
image size to change over time. For more information about variable-size signals, see “Variable-Size
Signal Basics” (Simulink).

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Subscribe | Blank Message

Topics
“Manage Array Sizes for ROS Messages in Simulink”
“Variable-Size Signal Basics” (Simulink)

 Read Point Cloud

4-47

ROS Read Scan, ROS 2 Read Scan
Extract scan data from ROS or ROS 2 laser scan message
Library: ROS Toolbox / ROS

ROS Toolbox / ROS 2

Description
The Read Scan block extracts range, scan and intensity data from a ROS or ROS 2 laser scan
message. You can select the message parameters of a topic active on a live ROS or ROS 2 network, or
specify the message parameters separately. The input messages are specified as a nonvirtual bus. Use
the ROS Subscribe or the ROS 2 Subscribe block to receive a message from the network and input
the message to the Read Scan block. For ROS and ROS 2 models, you must use the blocks in the
respective ROS and ROS 2 library.

Ports
Input

Msg — ROS or ROS 2 laser scan message
nonvirtual bus

ROS 2 laser scan message, specified as a nonvirtual bus. You can use the ROS Subscribe or the ROS 2
Subscribe blocks to get a message from the network.
Data Types: bus

Output

Ranges — Range values for each point
array

Range values for each point in the scan, returned as an array of length M.
Data Types: single

Angles — Angle values for each point
array

Angle values for each point in the scan, returned as an array of length M.

Dependencies

Enable Show Angles output port parameter.

4 Blocks

4-48

Data Types: single

Intensities — Intensity value for each point
array

Intensity values for each point in the scan, returned as an array of length M.

Dependencies

Enable Show Intensities output port parameter.
Data Types: single

ErrorCode — Error code for message parsing
scalar

Error code for message parsing, returned as a scalar. The error code values are:

• 0 — Successfully parsed the laser scan message.
• 1 — The Data field of the laser scan message was truncated.

Dependencies

Enable Show ErrorCode output port parameter.
Data Types: uint8

Parameters
Maximum array length — Maximum length of the laser scan array
100 (default) | positive scalar

Maximum length of the laser scan array, specified as a positive scalar.

Select Configure using ROS... to set this parameter automatically using an active topic on a ROS or
ROS 2 network. You must be connected to the network.

Show Angles output port — RGB port toggle
off (default) | on

Select this parameter to enable the Angles port. If you enable this parameter, the message must
contain RGB data or the block returns an error code.

Show Intensity output port — Intensity port toggle
off (default) | on

Select this parameter to enable the Intensity port. If you enable this parameter, the message must
contain intensity data or the block returns an error code.

Show ErrorCode output port — ErrorCode port toggle
on (default) | off

Select this parameter to enable the ErrorCode port and monitor errors.

Output variable-size signals — Variable-size signal output toggle
off (default) | on

 ROS Read Scan, ROS 2 Read Scan

4-49

Toggle whether to output a variable-size signal. Use variable-sized signals only if you expect the
image size to change over time. For more information about variable-size signals, see “Variable-Size
Signal Basics” (Simulink).

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
rosReadScanAngles | rosReadCartesian | rosReadLidarScan | rosPlot

4 Blocks

4-50

Set Parameter
Set values on ROS parameter server
Library: ROS Toolbox / ROS

Description
The Set Parameter block sets the Value input to the specified name on the ROS parameter server.
The block uses the ROS node of the Simulink model to connect to the ROS network. This node is
created when you run the model and is deleted when the model terminates. If the model does not
have a node, the block creates one.

Input/Output Ports
Input

Value — Parameter value
scalar | logical | uint8 array

Parameter value from the ROS network. The value depends on the Data type parameter.

Length — Length of string parameter
integer

Length of the string parameter, specified as an integer. This length is the number of elements of the
uint8 array or the number of characters in the string that you cast to uint8.

Note When casting your string parameters to uint8, ASCII values 0–31 (control characters) return
an error due to their incompatible character type.

Dependencies

To enable this port, set the Data type to uint8[] (string).

Parameters
Source — Source for specifying the parameter name
Select from ROS network | Specify your own

Source for specifying the parameter name as one of the following:

• Select from ROS network — Use Select to select a parameter name. The Data type
parameter is set automatically. You must be connected to a ROS network.

• Specify your own — Enter a parameter name in Name and specify its data type in Data type.
You must match a parameter name exactly.

 Set Parameter

4-51

Name — Parameter name
string

Parameter name to get from the ROS network, specified as a string. When Source is set to Select
from ROS network, use Select to select an existing parameter. You must be connected to a ROS
network to get a list of parameters. Otherwise, specify the parameter and data type.

Parameter name strings must follow the rules of ROS graph names. Valid names have these
characteristics:

• The first character is an alpha character ([a-z|A-Z]), tilde (~), or forward slash (/).
• Subsequent characters are alphanumeric ([0-9|a-z|A-Z]), underscores(_), or forward slashes (/).

Data type — Data type of your parameter
double | int32 | boolean | uint8[] (string)

Data type of your parameter, specified as a string.

Note The uint8[] (string) data type is an array of ASCII values corresponding to the characters
in a string. When getting string parameters, you can create a MATLAB Function block to compare the
string to a desired parameter value. For more information, see “ROS Parameters in Simulink”.

Data Types: double | int32 | Boolean | uint8

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Get Parameter

Topics
“ROS Parameters in Simulink”

External Websites
ROS Parameter Servers
ROS Graph Names

4 Blocks

4-52

https://wiki.ros.org/Parameter%20Server
https://wiki.ros.org/Names

Subscribe
Receive messages from ROS network
Library: ROS Toolbox / ROS

Description
The Subscribe block creates a Simulink nonvirtual bus that corresponds to the specified ROS
message type. The block uses the node of the Simulink model to create a ROS subscriber for a
specific topic. This node is created when the model runs and is deleted when the model terminates. If
the model does not have a node, the block creates one.

On each simulation step, the block checks if a new message is available on the specific topic.If a new
message is available, the block retrieves the message and converts it to a Simulink bus signal. The
Msg port outputs this new message. If a new message is not available, Msg outputs the last received
ROS message. If a message has not been received since the start of the simulation, Msg outputs a
blank message.

Input/Output Ports
Output

IsNew — New message indicator
0 | 1

New message indicator, returned as a logical. If the output is 1, then a new message was received
since the last sample hit. This output can be used to trigger subsystems for processing new messages
received in the ROS network.

Msg — ROS message
nonvirtual bus

ROS message, returned as a nonvirtual bus. The type of ROS message is specified in the Message
type parameter. The Subscribe block outputs blank messages until it receives a message on the topic
name you specify. These blank messages allow you to create and test full models before the rest of
the network has been setup.
Data Types: bus

Parameters
Topic source — Source for specifying topic name
Select from ROS network | Specify your own

Source for specifying the topic name, specified as one of the following:

 Subscribe

4-53

• Select from ROS network — Use Select to select a topic name. The Topic and Message type
parameters are set automatically. You must be connected to a ROS network.

• Specify your own — Enter a topic name in Topic and specify its message type in Message
type. You must match a topic name exactly.

Topic — Topic name to subscribe to
string

Topic name to subscribe to, specified as a string. When Topic source is set to Select from ROS
network, use Select to select a topic from the ROS network. You must be connected to a ROS
network to get a list of topics. Otherwise, set Topic source to Specify your own and specify the
topic you want.

Message type — ROS message type
string

ROS message type, specified as a string. Use Select to select from a full list of supported ROS
messages. Service message types are not supported and are not included in the list.

Sample time — Interval between outputs
–1 (default) | scalar

Interval between outputs, specified as a scalar. In simulation, the sample time follows simulation time
and not actual clock time.

This default value indicates that the block sample time is inherited.

For more information about the inherited sample time type, see “Specify Sample Time” (Simulink).

Length of subscribe callback queue — Message queue length
1 (default) | integer

Message queue length in code generation, specified as an integer. In simulation, the message queue
is always 1 and cannot be adjusted. To ensure each message is caught, use a smaller model step or
only execute the model if IsNew returns 1.

Tips
You can also set the addresses for the ROS master and node host by clicking the Configure network
addresses link in the block.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blank Message | Publish

4 Blocks

4-54

Topics
“Composite Interface Guidelines” (Simulink)
“ROS Simulink Interaction”

 Subscribe

4-55

Subscribe
Receive messages from ROS 2 network
Library: ROS Toolbox / ROS 2

Description
The Subscribe block creates a Simulink non-virtual bus that corresponds to the specified ROS 2
message type. The block uses the node of the Simulink model to create a ROS 2 subscriber for a
specific topic. This node is created when the model runs and is deleted when the model terminates. If
the model does not have a node, the block creates one.

On each simulation step, the block checks if a new message is available on the specific topic. If a new
message is available, the block retrieves the message and converts it to a Simulink bus signal. The
Msg port outputs this new message. If a new message is not available, Msg outputs the last received
ROS 2 message. If a message has not been received since the start of the simulation, Msg outputs a
blank message.

Ports
Output

IsNew — New message indicator
0 | 1

New message indicator, returned as a logical. If the output is 1, then a new message was received
since the last sample hit. This output can be used to trigger subsystems for processing new messages
received in the ROS 2 network.

Msg — ROS 2 message
non-virtual bus

ROS 2 message, returned as a non-virtual bus. The type of ROS message is specified in the Message
type parameter. The Subscribe ROS 2 block outputs blank messages until it receives a message on
the topic name you specify. These blank messages allow you to create and test full models before the
rest of the network has been setup.
Data Types: bus

Parameters
Main

Topic source — Source for specifying topic name
Select from ROS network | Specify your own

Source for specifying the topic name, specified as one of the following:

4 Blocks

4-56

• Select from ROS network — Use Select to select a topic name. The Topic and Message type
parameters are set automatically. You must be connected to a ROS network.

• Specify your own — Enter a topic name in Topic and specify its message type in Message
type. You must match a topic name exactly.

Topic — Topic name to subscribe to
string

Topic name to subscribe to, specified as a string. When Topic source is set to Select from ROS
network, use Select to select a topic from the ROS network. You must be connected to a ROS 2
network to get a list of topics. Otherwise, set Topic source to Specify your own and specify the
topic you want.

Message type — ROS 2 message type
string

ROS 2 message type, specified as a string. Use Select to select from a full list of supported ROS 2
messages. Service message types are not supported and are not included in the list.

Sample time — Interval between outputs
–1 (default) | scalar

Interval between outputs, specified as a scalar. In simulation, the sample time follows simulation time
and not actual wall-clock time.

This default value indicates that the block sample time is inherited.

For more information about the inherited sample time type, see “Specify Sample Time” (Simulink).

Quality of Service (QoS)

History — Mode of storing messages in the queue
Keep last (default) | Keep all

Determines the mode of storing messages in the queue. The queued messages will be sent to late-
joining subscribers. If the queue fills with messages waiting to be processed, then old messages will
be dropped to make room for new. When set to Keep last, the queue stores the number of
messages set by the Depth property. Otherwise, when set to Keep all, the queue stores all
messages up to the MATLAB resource limits.

Depth — Size of the message queue
1 (default) | positive scalar

Number of messages stored in the message queue when History is set to Keep last.

Reliability — Delivery guarantee of messages
Reliable (default) | Best effort

Affects the guarantee of message delivery. If Reliable, then delivery is guaranteed, but may retry
multiple times. If Best effort, then attempt delivery and do not retry.

Durability — Persistence of messages
Volatile (default) | Transient local

 Subscribe

4-57

Affects persistence of messages in publishers, which allows late-joining subscribers to receive the
number of old messages specified by Depth. If Volatile, then messages do not persist. If
Transient local, then publisher will retain the most recent messages.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Publish | Blank Message

4 Blocks

4-58

ROS Write Image, ROS 2 Write Image
Write image data to a ROS or ROS 2 message
Library: ROS Toolbox / ROS

ROS Toolbox / ROS 2

Description
The Write Image block writes image data to a ROS or ROS 2 image message. You can specify the
encoding for the output image message. Use the ROS Publish or ROS 2 Publish block to publish the
output image message to an active topic on the network.

Ports
Input

Image — Input image signal
M-by-N-by-3 matrix | M-by-N matrix

Image pixel data, specified as an M-by-N-by-3 matrix for color images, and an M-by-N matrix for
grayscale images.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16

AlphaChannel — Alpha channel for input image
M-by-N matrix

Alpha channel for image, specified as an M-by-N matrix. This matrix is the same height and width as
the image input. Each element has a value in the range [0,1] that indicates the opacity of the
corresponding pixel, with a value of 0 being completely transparent.

Dependencies

The selected image encoding must support alpha channel.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16

Output

Msg — ROS or ROS 2 image message
nonvirtual bus

ROS or ROS 2 image message, returned as a nonvirtual bus. You can use the ROS Publish or ROS 2
Publish block to publish the message to an active ROS or ROS 2 network respectively.

 ROS Write Image, ROS 2 Write Image

4-59

Data Types: bus

Parameters
Image Encoding — Image encoding
rgb8 (default) | rgba8 | ...

Image encoding for the input Image, specified as one of the supported options. For more information
about encoding types, see rosReadImage.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
rosWriteImage | rosReadImage

4 Blocks

4-60

ROS Write Point Cloud, ROS 2 Write Point Cloud
Write point cloud data to a ROS or ROS 2 message
Library: ROS Toolbox / ROS

ROS Toolbox / ROS 2

Description
The Write Point Cloud block writes point cloud data to a ROS or ROS 2 image message. You can
specify the appropriate color encoding for the point cloud image and write the corresponding color
and alpha values to the output message. Use the ROS Publish or ROS 2 Publish block to publish the
output image message to an active topic on the network.

Ports
Input

XYZ — XYZ coordinates
matrix | array

x-, y-, and z- coordinates of each point in the point cloud data, specified as either an N-by-3 matrix or
h-by-w-by-3 array. N is the number of points in the point cloud. h and w are the height and width of
the image, in pixels.
Data Types: single

RGB — RGB values for each point
matrix | array

RGB values for each point of the point cloud data, specified as either an N-by-3 matrix or h-by-w-by-3
array. N is the number of points in the point cloud. h and w are the height and width of the image in
pixels. The RGB values specify the red, green, and blue color intensities in the range of [0,1].
Dependencies

The selected color field must support rgb values.
Data Types: double

Alpha — Alpha channel for input image
N-by-1 vector | h-by-w matrix

Alpha channel for image, specified as an N-by-1 vector or h-by-w matrix. Each element has a value in
the range [0,1] that indicates the opacity of the corresponding pixel, with a value of 0 being
completely transparent.

 ROS Write Point Cloud, ROS 2 Write Point Cloud

4-61

Dependencies

The selected color field must support alpha channel.
Data Types: double

Output

Msg — ROS or ROS 2 point cloud message
nonvirtual bus

ROS or ROS 2 point cloud message, retuned as a nonvirtual bus. You can use the ROS Publish or ROS
2 Publish block to publish the message to an active ROS or ROS 2 network respectively.
Data Types: bus

Parameters
Select color field — Color field for the point cloud image
none (default) | rgb | rgba

Color field of the point cloud image, specified as one of the supported options. Choose the
appropriate option to specify color and alpha values corresponding to the point cloud image.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
rosReadXYZ | rosReadRGB | rosPlot | rosReadField | rosReadAllFieldNames

4 Blocks

4-62

	Functions
	apply
	call
	cancelAllGoals
	cancelGoal
	canTransform
	definition
	del
	deleteFile
	dir
	get
	getFile
	getTransform
	has
	isCoreRunning
	isNodeRunning
	isServerAvailable
	openShell
	plot
	putFile
	readAllFieldNames
	readBinaryOccupancyGrid
	readCartesian
	readField
	readImage
	readMessages
	readOccupancyGrid
	readOccupancyMap3D
	readRGB
	readScanAngles
	readXYZ
	receive
	ros2
	ros2genmsg
	ros2message
	ros2duration
	ros2time
	rosaction
	rosAddons
	rosApplyTransform
	rosbag
	rosduration
	rosgenmsg
	rosinit
	rosmessage
	rosmsg
	rosnode
	rosparam
	rosReadAllFieldNames
	rosReadBinaryOccupancyGrid
	rosReadCartesian
	rosReadField
	rosReadImage
	rosReadLidarScan
	rosReadOccupancyGrid
	rosReadOccupancyMap3D
	rosRegisterMessages
	ros2RegisterMessages
	rosPlot
	rosReadQuaternion
	rosReadRGB
	rosReadScanAngles
	rosReadXYZ
	rosservice
	rosShowDetails
	rosshutdown
	rostopic
	rostype
	rosWriteBinaryOccupancyGrid
	rosWriteCameraInfo
	rosWriteImage
	rosWriteOccupancyGrid
	runCore
	runNode
	scatter3
	search
	seconds
	select
	send
	sendGoal
	sendGoalAndWait
	sendTransform
	set
	showdetails
	stopCore
	stopNode
	system
	timeseries
	transform
	waitForServer
	waitForServer
	waitForTransform
	writeBinaryOccupancyGrid
	writeImage
	writeOccupancyGrid

	Classes
	BagSelection
	Core
	CompressedImage
	Image
	LaserScan
	Node
	ros2node
	OccupancyGrid
	PointCloud2
	rosdevice
	ros2device
	ros2svcclient
	ros2svcserver
	rosactionserver
	rosactionclient
	rosbagreader
	rosbagwriter
	ros2bagwriter
	ParameterTree
	rospublisher
	ros2bagreader
	ros2param
	ros2publisher
	ros2subscriber
	rosrate
	ros2rate
	rossubscriber
	rossvcclient
	rossvcserver
	rostf
	rostime
	TransformStamped
	velodyneROSMessageReader
	pcplayer
	hide
	isOpen
	show
	view
	pointCloud
	findNearestNeighbors
	findNeighborsInRadius
	findPointsInROI
	removeInvalidPoints
	select

	Methods
	getFeedbackMessage
	isPreemeptRequested
	sendFeedback
	rosActionServerExecuteGoalFcn
	waitfor
	reset
	statistics
	select
	delete
	write
	delete
	write
	reset
	statistics
	waitfor
	readMessages
	select
	get
	has
	list
	search
	set
	send
	getParameter
	setParameter
	delete
	receive
	hasFrame
	readFrame
	reset

	Blocks
	Blank Message
	Blank Message
	Call Service
	Call Service
	Coordinate Transformation Conversion
	Current Time
	Current Time
	Get Parameter
	Get Parameter
	Header Assignment
	Publish
	Publish
	Read Data
	Read Data
	Read Image
	Read Image
	Read Point Cloud
	Read Point Cloud
	ROS Read Scan, ROS 2 Read Scan
	Set Parameter
	Subscribe
	Subscribe
	ROS Write Image, ROS 2 Write Image
	ROS Write Point Cloud, ROS 2 Write Point Cloud

